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Abstract

In this paper, we study the arithmetics of skew polynomial rings over finite fields,
mostly from an algorithmic point of view. We give various algorithms for fast mul-
tiplication, division and extended Euclidean division. We give a precise description
of quotients of skew polynomial rings by a left principal ideal, using results relating
skew polynomial rings to Azumaya algebras. We use this description to give a new
factorization algorithm for skew polynomials, and to give other algorithms related to
factorizations of skew polynomials, like counting the number of factorizations as a
product of irreducibles.
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Introduction

The aim of this paper is to present several algorithms to deal efficiently with rings of skew
polynomials over finite fields. These noncommutative rings have been widely studied, in-
cluding from an algorithmic point of view, since they were first introduced by Ore in 1933.
The main applications for the study of skew polynomials over finite fields are for error-
correcting codes. The first significant results in terms of effective arithmetics in these rings,
including an algorithm to factor a skew polynomial as a product of irreducibles, appear in
Giesbrecht’s paper [Gie98]. In this paper, we give a factorization algorithm whose com-
plexity improves on Giesbrecht’s. We also describe various fast-multiplication algorithms
for skew polynomials, and some additional algorithms such as a factorization-counting al-
gorithm, or an algorithm generating the uniform distribution on the factorizations of a
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given skew polynomial.
The first part of the article is mostly theoretical. Let k be a finite field of characteristic
p, and let σ be an automorphism of k. We denote by kσ the subfield of k fixed by σ, and
by r the order of σ on k. The ring k[X,σ] of skew polynomials with coefficients in k is a
noncommutative ring, on which multiplication is determined by X · a = σ(a) · X for all
a ∈ k. The first Theorem we shall prove is the following:

Theorem (cf Theorem 1.2.1). The ring k[X,σ][1/X] is an Azumaya algebra over its
centre kσ[Xr][1/Xr].

This Theorem has many important consequences for our purpose. The first one is
the existence of a reduced norm map k[X,σ] → k[Xr], which turns out to have very nice
properties related to factorizations. For instance, we shall explain how it can be used to
establish a close link between factorizations of a skew polynomial and basic linear algebra
over finite extensions of kσ. As an illustration, we will show how to use this theory to
derive a formula giving the number of factorizations of any skew polynomial.

The second part of the paper deals with algorithmic aspects of skew polynomials.
We start by giving various fast-multiplication algorithms and, as usual, we derive from
them efficient algorithms to compute Euclidean division and gcd. Then, we reach the
core algorithm of this paper: the factorization algorithm. Making an intensive use of the
theory developped in the first part, we obtain a very efficient algorithm to factor a skew
polynomial as a product of irreducible skew polynomials, SkewFactorization.

Theorem (cf Theorem 2.4.2). The algorithm SkewFactorization factors a skew polyno-
mial of degree d in k[X,σ] with complexity

Õ(dr3 log q + d log2 q + d1+ε(log q)1+o(1) + F (d, kσ))

bit operations, for all ε > 0. Here, F (d,K) denotes the complexity of the factorization of
a (commutative) polynomial of degree d over the finite field K.

In [KU08], Kedlaya and Umans described a factorization algorithm of polynomials over
finite fiels whose complexity is:

F (d,K) = (d3/2+o(1) + d1+o(1) log q) · (log q)1+o(1)

bit operations, where q is the cardinality of K. Assuming this value for F (d,K), we
see that the terms d log2 q and d1+ε(log q)1+o(1) are negligible compared to F (d,K). If
furthermore r3 � d, also is the term dr3 log q. With this extra assumption, the complexity
of our algorithm is then comparable to the complexity of the factorization of a commutative
polynomial of the same degree.

The complexity of our algorithm should be compared to the complexity of Giesbrecht’s
algorithm, which is:

Õ(d4r2 log q + d3r3 log q + d ·MM(dr) log q + d2r · log2 q)

bit operations1 where MM(n) is the complexity of the multiplication of two n×n matrices.
1In Giesbrecht’s paper, the complexity is given in number of operations in kσ. Since any operation

in kσ requires Õ(log q) bit operations (using fast algorithms), the complexity we have given is just from
Giesbrecht’s one by multiplying by Õ(log q).
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The strategy of our algorithm is roughly comparable to the one of Giesbrecht’s: in order
to factor P , we find a multipleN of P lying in the centre of k[X,σ], we factorN in the centre
(which is a commutative polynomial ring) and we recover a factorization of P from the
factorization of N we have just computed. The two main improvments are the following.
Firstable, we obtain better algorithms to achieve basic operations (like multiplication,
Euclidean division and gcd’s). Using them to factor a polynomial improves significantly
the complexity. The second improvement (which is the most important) consists in taking
a large benefit of the closed study of all involved objects we have done in the first part. For
instance, in order to obtain the central multiple N , we just compute the reduced norm, for
which efficient algorithms exist. In the same way, our theoretical results imply that, for
some particular P , the quotient k[X,σ]/k[X,σ]P is endowed with a rich structure and we
use it to replace computations with large matrices over kσ by computations with matrices
of size at most r defined over a bigger field. Since usual arithmetics in field extensions is
more efficient than computations with matrices (quasilinear vs subcubic), we gain a lot.

Eventually, we give an algorithm to compute the number of factorizations of a skew
polynomial and we describe an algorithm to generate the uniform distribution on the
factorizations of a skew polynomial.

All the algorithms described here have been implemented in sage, and some of them
in magma. We discuss briefly about the implementation.

This work was supported by the Agence Nationale de la Recherche, CETHop project,
number ANR-09-JCJC-0048-01.

1 The ring k[X, σ]

1.1 Some facts about k[X, σ]

Let k be a finite field of characteristic p and let σ be an automorphism of k. We denote
by kσ the subfield of k fixed by σ. Let r be the order of σ: r is also the degree of the
extension k/kσ. We denote by k[X,σ] the ring of skew polynomials with coefficients in k.
The underlying group is just k[X], and the multiplication is determined by the rule

∀a ∈ k, Xa = σ(a)X.

We recall some notions from [Jac96], Chapter 1 (mainly §1.1 and 1.2). The centre of k[X,σ]
is kσ[Xr]. The ring k[X,σ] is endowed with left- and right-euclidean division algorithms.
Hence, there are also notions of right- and left-greatest common divisor, and left- and
right-lowest common multiple (denoted respectively by rgcd, lgcd, llcm, rlcm). Of course,
every element of k[X,σ] can be written as a product of irreducible elements of k[X,σ].
However, a such factorization is not unique in general. The first result that describes how
two factorizations of a skew polynomial as a product of irreducibles are related is due to
Ore. Before stating it, let us give a definition:

Definition 1.1.1. Let P,Q ∈ k[X,σ] be two skew polynomials. Then P and Q are similar
if there exist U, V ∈ k[X,σ] such that rgcd(P, V ) = 1, llcm(Q,U) = 1 and UP = QV .

Even though it may not be clear at first glance, this is an equivalence relation. Remark
that in the case σ = id, this just means that P and Q are equal up to multiplication by
an element of k×. We then have the following theorem:
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Theorem (Ore, [Ore33]). Let P1, . . . , Pn and Q1, . . . , Qm be irreducible skew polynomials.
If P1 · · ·Pn = Q1 · · ·Qm, then m = n and there exists a permutation τ of {1, . . . , n} such
that for all 1 ≤ i ≤ n, Pi is similar to Qτ(i).

However, the converse of this theorem is false. In general, if the Pi and Qi are pairwise
similar,

∏
Pi and

∏
Qi are not even similar.

An interesting point of view on skew polynomials is that of ϕ-modules that we shall elab-
orate on later. For now, it is enough to say that a ϕ-module over k is a k[X,σ]-module
of finite type. If P ∈ k[X,σ] is nonzero, a typical example of a ϕ-module over k is
k[X,σ]/k[X,σ]P , which is “the ϕ-module associated to P ”. Then, two skew polynomials
are similar if and only if the associated ϕ-modules are isomorphic, and Ore’s theorem is
just a restatement of the Jordan-Hölder Theorem in the category of ϕ-modules.

1.2 The ring k[X, σ][1/X] is an Azumaya algebra

The aim of this section is to prove the Theorem 1.2.1 and to give several consequences.
Let us now recall the statement of the Theorem:

Theorem 1.2.1. The ring k[X,σ][1/X] is an Azumaya algebra over kσ[Xr][1/Xr].

Proof. Let us denote by R the ring k[X,σ][1/X] and by C its centre kσ[Xr][1/Xr]. By
definition, it is enough to show that for every prime ideal P of C, R/P ⊗C Frac(C/P) is
a central simple algebra over Frac(C/P). The case P = (0) is exactly [Jac96], Theorem
1.4.6. The other prime ideals of C are of the form (N) with N ∈ kσ[Xr] monic irreducible
and different from Xr. Fix such an irreducible polynomial N . Denote by E the field of
fractions of C/(N). Let us first show that RN = R ⊗C E is simple. Let I ⊂ RN be a
two-sided ideal. Assume that I 6= (0), and let x ∈ RN be a nonzero element of I. First
remark that every element of RN can be written as P ⊗ 1. Indeed, if t is the class of Xr is
E = C/(N), then 1⊗ t = Xr⊗1. Therefore, we can write x = P ⊗1 with P ∈ k[X,σ]/(N).
Now assume that x and P are chosen such that the number of nonzero coefficients of P
is minimal (with x ∈ I \ {0}). We can assume that P is monic of degree d. We have
P − XPX−1 ∈ I, and this polynomial has less nonzero coefficients than P , so that it is
zero. Similarly, if a ∈ k×, P − σd(a)−1Pa = 0. This shows that x is central. Since the
centre of RN is a commutative finite integral E-algebra, it is a field, so x is invertible and
I = RN .
It remains to prove that this centre is exactly E. We just need to solve the equations
X
∑deg(N)−1

i=0 aiX
i =

∑deg(N)−1
i=0 aiX

i+1 and α
∑deg(N)−1

i=0 aiX
i =

∑deg(N)−1
i=0 aiX

iα for α a
generator of k/kσ. It is easy to see that the solutions are exactly (the reduction modulo
N of) elements of kσ[Xr], so that the centre of RN is E.

This result has various corollaries that are interesting for questions about factoring
skew polynomials.

Corollary 1.2.2. Let N ∈ kσ[Xr] be a nonzero polynomial that is not a power of X. Then
C/NC and R/NR are Morita-equivalent.

Proof. Since R is an Azumaya algebra over C, R/NR is an Azumaya algebra over C/NC.
Since C/NC is a finite commutative ring, its Brauer group is trivial, hence R/NR and
C/NC represent the same class in this Brauer group.
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Corollary 1.2.3. Let N ∈ kσ[Xr] be an irreducible polynomial different from X. Let EN
be the quotient field C/(N). Then

R/NR 'Mr(EN ),

the ring of r × r matrices with coefficients in EN .

Proof. By corollary 1.2.2, R/NR is a ring of matrices with coefficients in EN . The result
follows from the fact that R/NR has dimension r2 degN over kσ.

One of the usual objects associated to Azumaya algebras is the notion of reduced norm.
This notion will be very important in the rest of the paper. In our situation, it is a
multiplicative morphism N : k[X,σ][1/X] → kσ[Xr][1/Xr] which can be defined as
follows. Consider the largest étale subalgebra of k[X,σ][1/X], which is k[Xr][1/Xr]. Then,
N (x) is nothing but the determinant of the right-multiplication by P on k[X,σ][1/X]
considered as a k[Xr][1/Xr]-module. Using that k[X,σ] is a free module of rank r over
k[Xr] (with basis (1, X, . . . ,Xr−1) for example), we deduce directly that N maps k[X,σ] to
kσ[Xr]. We furthermore note that, if P is the central skew polynomial (i.e. P ∈ kσ[Xr]),
the (right-)multiplication by P acts on a k[X,σ] by (left-)multiplication by P and therefore
has determinant P r. Therefore N (P ) = P r provided that P ∈ kσ[Xr].

Remark 1.2.4. The property of being an Azymaya algebra could certainly be generalized
to some other skew polynomal rings, for instance k[X, ∂] where ∂f = f ′+f∂. For Azumaya
algebras over rings whose Brauer group is trivial, many results of this paper should remain
true. Since the triviality of the Brauer group is used strongly, there would probably be
variations in the expected theorems when the Brauer group is nontrivial.

1.3 Reinterpretation in terms of Galois representations

In this section, we give a reinterpretation of the Morita equivalence in terms of Galois
representations, recovering a variation of a theorem of Katz. Let us first give one definition.

Definition 1.3.1. A ϕ-module over k is a finite dimensional k-vector space D endowed
with an endomorphism ϕ : D → D that is semilinear with respect to σ, i.e. for all x ∈ D
and a ∈ k, ϕ(λx) = σ(λ)ϕ(x). A ϕ-module is said to be étale if the map ϕ is injective.

By definition, a ϕ-module (resp. an étale ϕ-module) over k is exactly a left-k[X,σ]-
module having finite dimension over k.

Definition 1.3.2. If P ∈ k[X,σ], the ϕ-module DP associated to P is k[X,σ]/k[X,σ]P ,
endowed with the semilinear map ϕ given by left-multiplication by X. We say that P is
étale if DP is étale. (It exactly means that the constant coefficient of P is nonzero.)

Remark 1.3.3. Two skew polynomials P and Q are similar if and only if DP ' DQ.

The Morita equivalence shows the following:

Corollary 1.3.4. The category of étale ϕ-modules over k is equivalent to the category of
finite dimensional kσ-vector spaces endowed with an invertible endomorphism.

Proof. Let D be an étale ϕ-module over k. Since D has finite dimension over k, it is
annihilated by some ideal (N) of C. By 1.2.2, the categories of left-R/NR-modules and
C/NC-modules are equivalent and we are done.
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This corollary can also be seen as a variation of the following theorem:

Theorem (Katz). Let K be a field of characteristic p > 0 endowed with a power of the
Frobenius endomorphism σ. Then the category of étale ϕ-modules over K is equivalent to
the category of Kσ-representations of the absolute Galois group of K.

Indeed, if σ(a) = ap
s , let K = kFps . Then Kσ = kσ, and the absolute Galois group

of K is a procyclic group, so that a representation of this group is just the data of an
invertible endomorphism of a kσ-vector space of finite dimension (giving the action of a
generator of the group). The functor giving this equivalence is explicit: the representation
corresponding to an étale ϕ-module D over k is Homϕ(D,Ksep).

Proposition 1.3.5. Let (D,ϕ) be a ϕ-module over k, and let σr be the generator of
the absolute Galois group of kFps. Then the action of σr on the kσ-representation V
corresponding to D is isomorphic to ϕr:

(V ⊗kσ k, σ ⊗ 1) ' (D,ϕr).

Proof. It is enough to prove the result when ϕr is cyclic. Let f ∈ V = Homϕ(D,Ksep).
Then for x ∈ D, σrf(x) = f(ϕr(x)). This shows that the polynomials annihilating σr and
ϕr are the same. The characteristic and minimal polynomials of σr are the same, and equal
to the characteristic polynomial of ϕr, so these two endomorphisms are conjugate.

Using the fact that two skew polynomials are similar if and only if the corresponding
ϕ-modules are isomorphic, we immediately get:

Corollary 1.3.6. Let P,Q ∈ k[X,σ]. The skew polynomials P and Q are similar if and
only if the kσ[Xr]-modules (DP , ϕ

r) and (DQ, ϕ
r) are isomorphic.

Since ϕr is a k-linear map, testing if these kσ[Xr] are isomorphic is completely straight-
forward.

1.4 Factorizations

In this section, we study some properties related to factorizations of skew polynomials
and the structure of the corresponding ϕ-modules. First recall that if P is a monic étale
skew polynomial, there is a bijection between all factorizations of P as a product of monic
irreducible skew polynomials, one the one hand, and all Jordan-Hölder sequence of the
corresponding ϕ-module, on the other hand. By theorem 1.3.5, these factorizations are
also in bijection with Jordan-Hölder sequence of DP (viewed as a kσ[Xr]-module). We
shall see how we can use this to count the number of factorizations of P .

1.4.1 Another definition of the norm

Recall that we have defined the (reduced) norm of a skew polynomial P ∈ k[X,σ] as the
determinant of the right-multiplication by P acting on the k[Xr]-module k[X,σ]. Propo-
sition 1.3.5 allows us to give an equivalent definition:

Lemma 1.4.1. Let P ∈ k[X,σ] be monic and let (DP , ϕ) be the corresponding ϕ-module.
Then the norm N (P ) is the characteristic polynomial of ϕr. If P = aP̃ with P̃ monic,
then N (P ) = Nk/kσ(a) · N (P̃ ).
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Proof. LetmP be the right-multiplication by P acting on k[X,σ]. Since both P 7→ N (P ) =
detmP and P 7→ χϕr are multiplicative, it is enough to prove the Lemma when P is monic
irreducible. Let π : k[X,σ] → DP be the canonical projection. We have π ◦ mP = 0.
Since π is surjective, the multiplication by detmP is also zero in DP . This means that the
minimal polynomial of the multiplication by Xr on DP is a divisor of detmP . Since P is
irreducible, this minimal polynomial is the characteristic polynomial χ of ϕr. It is then
enough to show (1) that the degree of N (P ) is the same as the degree of χ and (2) that
N (P ) is monic. Write P = P0 +XP1 + · · ·+Xr−1Pr−1 with the Pi’s in k[Xr]. In the basis
(1, X, . . . ,Xr−1), the matrix of mP is:

P0 Xrσ(Pr−1) . . . . . . Xrσr−1(P1)

P1 σ(P0)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . Xrσr−1(Pr−1)

Pr−1 · · · · · · · · · σr−1(P0)


.

Let 0 ≤ i ≤ r−1 be the greatest integer such that the degree of Pi is maximal, and denote
by δ this degree. In the sum giving the determinant of this matrix, we have the term

Piσ(Pi) · · ·σr−i−1(Pi)X
rσr−i(Pi) · · ·σr−1(Pi),

whose degree is δ(r− i) + (δ+ 1)i = δr+ i (as a polynomial in Xr). All the other terms of
the determinant have degree less than this, so N (P ) = detmP has degree δr+ i = degP =
degχ and is monic.

Proposition 1.4.2. Let N be the reduced norm map on k[X,σ]. Then the following
properties hold:

• ∀P ∈ k[X,σ], P is a right- and left-divisor of N (P ) in k[X,σ],

• ∀P ∈ k[X,σ], P is irreducible if and only if N (P ) is irreducible in kσ[Xr],

• If P,Q ∈ k[X,σ] and P is irreducible, then P and Q are similar if and only if
N (P ) = N (Q) (up to multiplicative constant).

Proof. The first fact is well-known (see for instance [Jac96], Proposition 1.7.1). It can be
seen easily from the fact that if (DP , ϕ) is the ϕ-module associated to P , thenN (P )(ϕ) = 0.
Indeed, the left-ideal {R ∈ k[X,σ] | R(ϕ) = 0} is exactly k[X,σ]P .
For the second assertion, remark that P is irreducible if and only if DP is simple, which
holds if and only if the corresponding representation is irreducible. This is true if and only
if the characteristic polynomial of ϕr is irreducible in kσ[Xr].
Finally, we have already seen that the similarity class of a skew polynomial is determined
by the conjugacy class of the action of ϕr on the corresponding ϕ-module (corollary 1.3.6).
For irreducible elements, this is completely determined by the characteristic polynomial of
ϕr, i.e. the reduced norm.

Since P is a divisor of N (P ), we can expect that if Ñ is some irreducible factor of N (P )
in kσ[Xr], then rgcd(Ñ , P ) would be a nonconstant right-divisor of P . This is actually
always true and formalized by the following lemma:
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Lemma 1.4.3. Let P ∈ k[X,σ] be étale and monic. Let N = N (P ). If N = N1 · · ·Nm

with all Ni’s irreducible. Then there exist P1, . . . , Pm ∈ k[X,σ] such that P = P1 · · ·Pm
and for all 1 ≤ i ≤ m, N (Pi) = Ni.
Moreover, Pm can be chosen as an irreducible right-divisor of rgcd(P,Nm).

Proof. By induction on m, it is enough to prove the last assertion. Let VP be the Galois
representation corresponding to the ϕ-module DP via Katz’s equivalence of categories
(cf Theorem 1.3). Using Proposition 1.3.5, we find that VP has a subrepresentation
which is isomorphic to the quotient kσ[Xr]/Nm (where σr acts by multiplication by Xr).
Hence, there exists a surjective map DP → DPm where Pm is some skew polynomial of
reduced norm Nm. It implies that Pm is a right divisor P and then also a right divisor of
rgcd(P,Nm). This concludes the proof.

Remark 1.4.4. This result shows how to determine the similarity classes of irreducible
skew polynomials appearing in a factorization of P . It also shows that any order is possible
for the appearance of these similarity classes in a factorization of P .

When Ñ is an irreducible factor of N (P ), the right greatest common divisor rgcd(Ñ , P )
is never constant, so if we want to factor P as a product of irreducible polynomials, we
only need to know how to factor skew polynomials which are right-divisors of irreducible
elements of the centre kσ[Xr].

1.4.2 On the structure of DP when P divides an irreducible central polynomial

Let N ∈ kσ[Xr] be a monic irreducible polynomial, and let E = kσ[Xr]/(N). Let
P ∈ k[X,σ] be a right-divisor of N . The previous section has shown that factoring skew
polynomials can be reduced to factoring skew polynomials of this form. In this theoretical
section, we begin a close study of the structure of DP . All the results we are going to prove
will play a very important role in the next section when we will be interested in designed
a fast algorithm for factorization of skew polynomials.

We first remark that, since N (N) = N r, the norm of P is N e for some integer e ∈
{1, . . . , r}.

Lemma 1.4.5. The ϕ-module DN is isomorphic to a direct sum of r copies of a simple
ϕ-module.

Proof. It follows directly from Corollary 1.2.2.

The Lemma implies that if P is a right-divisor of N with N (P ) = N e, then the
ϕ-module DP = k[X,σ]/k[X,σ]P is isomorphic to a direct sum of e copies of a simple
ϕ-module. From this, we deduce that Endϕ(DP ) 'Me(E).

Ring of endomorphisms From now on, we write N = PQ for some Q ∈ k[X,σ].
Note that it implies that QN = QPQ; therefore NQ = QPQ (since N lies in the centre)
and, simplifying by Q, we get N = QP . In other words P and Q commute. The following
proposition compares the ϕ-moduleDP = k[X,σ]/k[X,σ]P and its ring of endomorphisms.

Proposition 1.4.6. The map

DP → Endϕ(DP )

R 7→ mQR :

∣∣∣∣ DP → DP

x 7→ xQR
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is a surjective additive group homomorphism.

Note that since PQ = QP = N is central in k[X,σ], the map above is well-defined.
Indeed, we have to check that if x ≡ x′ (mod P ) and R ≡ R′ (mod P ) then xQR ≡ x′QR′
(mod P ). Writing x′ = x+ SP and R′ = R+ TP , we have:

x′QR′ = xQR+ SPQR+ (xQT + SPQ)P

≡ xQR+ SNR ≡ xQR+ SRN ≡ xQR+ SRQP ≡ xQR (mod P )

which is exactly what we want. In order to prove the proposition, we will need the following
lemma, that states that in the case P = N , that map is in fact an isomorphism.

Lemma 1.4.7. Let N ∈ k[X,σ]. Then the map:

DN → Endϕ(DN )

R 7→ mR :

∣∣∣∣ DN → DN

x 7→ xR

is an isomorphism of rings.

Proof. The fact that our map is a morphism of rings is straightforward. It is injective
because R = mR(1). For the surjectivity, we remark that if N is a commutative polynomial
of degree δ, DN has dimension δr2 over kσ and, on the other hand, that if E is the field
kσ[Xr]/(N), Endϕ(DN ) is isomorphic toMr(E), so it also has dimension δr2.

Proof of Proposition 1.4.6. We have the exact sequence of ϕ-modules:

0→ k[X,σ]P/k[X,σ]N → DN → DP → 0,

and DQ is isomorphic to k[X,σ]P/k[X,σ]N via the multiplication by P . Since DN ' D⊕rP ,
this sequence is split. Let s : DP → DN be a section. We have Ps(1) = s(P ) ≡ 0 (mod N),
so there exists S ∈ DN such that Ps(1) = NS. Thus s(1) = QS. On the other hand,
QS = s(1) ≡ 1 (mod P ). Hence there exists some V ∈ k[X,σ] such that

QS + V P = 1.

It implies that DP is isomorphic to k[X,σ]QS/k[X,σ]N via the multiplication by QS.
Let u ∈ Endϕ(DP ), and let A = u(1) ∈ DP . For all x ∈ k[X,σ], u(x) = xu(1) = xA.

In other words, u is the mulitplication by A, i.e. u = mA. We then want to show that mA

is of the form mQR for some R ∈ DP . Let ũ the endomorphism of k[X,σ]QS/k[X,σ]N
deduced from u: we have ũ(QS) = AQS.

Since DN = k[X,σ]QS/k[X,σ]N ⊕ k[X,σ]P/k[X,σ]N (decomposition of ϕ-modules),
we can extend ũ to DN by setting ũ(P ) = 0. By Lemma 1.4.7, there exists T ∈ DN such
that for all x ∈ DN , ũ(x) = xT . In particular:{

PT ≡ 0 (mod N)
QST ≡ AQS (mod N)

Since V PT +QST = T , we have QST ≡ T (mod N). So, for x ∈ DN , we get ũ(xQS) =
xQST = xQSAQS = (xQSA)QS. Hence, for x ∈ DP , u(x) = xQSA. Setting R = SA,
we have u = mQR.

9



Corollary 1.4.8. Let R be a random variable uniformly distributed on DP . Then the right
multiplication by QR, mQR, is uniformly distributed on Endϕ(DP ) 'Me(E).

Proof. Since R 7→ mQR is surjective, the probability that mQR is equal to u ∈ Endϕ(DP )
is proportional to the cardinality of the fiber above u. We conclude the proof by remarking
that k-linearity together with surjectivity implies that all fibers have the same cardinality.

Some remarks about rgcd’s and llcm’s Let us present a rather elementary geometric
point of view on rgcd’s and llcm’s in skew polynomial rings. If P ∈ k[X,σ] is a divisor of
an irreducible commutative polynomial N of norm N e, and P1 is a right-divisor of P of
norm N e1 , then k[X,σ]P1/k[X,σ]P ⊂ DP is a sub-E-vector space F1 of DP of dimension
e− e1.

If P2 is another right-divisor of P of norm N e2 , it defines a sub-E-vector space F2 of
dimension e− e2.

The intersection and sum of these vector spaces have a description in terms of rgcd’s
and llcm’s:

Lemma 1.4.9. Let R = rgcd(P1, P2) and let M = llcm(P1, P2). Then:

• F1 + F2 = k[X,σ]R/k[X,σ]P ,

• F1 ∩ F2 = k[X,σ]M/k[X,σ]P .

Proof. Left to the reader.

Remark 1.4.10. We will mainly use this Lemma when P1 is irreducible. Then k[X,σ]P1/k[X,σ]P
is an hyperplane in DP . If we take the image of this hyperplane under any automorphism
of DP , we get another hyperplane, and it is likely that the intersection of this hyper-
plane with k[X,σ]P1/k[X,σ]P has codimension 2 in DP , and hence it is an hyperplane
in k[X,σ]P1/k[X,σ]P . We get this way an irreducible divisor of the quotient of the right
division of P by P1.

1.4.3 Counting factorizations

In this section, we explain how to compute the number of factorizations of a monic skew
polynomial P ∈ k[X,σ] as a product of monic irreducible polynomials.

Lemma 1.4.11. Let P ∈ k[X,σ] be a monic étale skew polynomial. Assume that N (P ) =
N e with N irreducible of degree d, and P is a right-divisor of N . Then the number of
factorizations of P as a product of monic irreducible skew polynomials is the qd-factorial
[e]qd ! = (qde−1)···(qd−1)

(qd−1)e

Proof. By induction on e, it is enough to prove that P has exactly qde−1
qd−1

monic irreducible
right-divisors. The number of monic irreducible right-divisors is also the number of simple
sub-ϕ-modules of k[X,σ]/k[X,σ]P . Such submodules are in bijection with kσ[Xr]/(N)-
lines in k[X,σ]/k[X,σ]P (if P1 is an irreducible right-divisor of P , every irreducible right-
divisor of P can be written as the image of P0 by an endomorphism of k[X,σ]/k[X,σ]P ),
so it has the cardinality of the projective space P(Ee), which is qde−1

qd−1
.
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Let us now define the type of a skew polynomial P . Recall first that the endomorphism
ϕr of DP defined over kσ can be put into Jordan form, and that a Jordan block is by
definition an invariant subspace in a basis of which the restriction of ϕr has a matrix of
the form: 

A I 0 · · · 0

0 A I
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . I

0 · · · · · · 0 A


,

with A having a characteristic polynomial that is irreducible in kσ[Xr]. We will say that
a Jordan block has size i if the number of matrices A that appear in this block is i.

Definition 1.4.12. Let P ∈ k[X,σ]. Assume that N (P ) = N e for some integer e. For
i ≥ 1, let ei be the number of Jordan blocks of (DP , ϕ

r) of size at least i. Let n be the
largest index such that ei 6= 0, we say that P has type (e1, . . . , en).

This means that if P has type (e1, . . . , en), the action of σr on the corresponding repre-

sentation has exactly e1 Jordan blocks, e2 of which contain a block of the form
(
A I
0 A

)
,

etc.

Remark 1.4.13. The type is determined by the nonincreasing sequence (a1, . . . , am), ai
being the size of the i-th largest Jordan block of (Dp, ϕ

r). The Young diagram associated
to (a1, . . . , am) is dual to the one associated to (e1, . . . , en). We will say that (a1, . . . , am)
is the dual sequence of (e1, . . . , en). We also say that (a1, . . . , am) is the dual type of P .

A skew polynomial P ∈ k[X,σ] has type (e) (with 1 ≤ e ≤ r) if and only if it is a
divisor of an irreducible polynomial N ∈ k[X,σ].

Definition 1.4.14. Let P ∈ k[X,σ] be a monic skew polynomial. Let Na1
1 · · ·N

at
t be the

factorization of N (P ) as a product of monic irreducible polynomials. For 1 ≤ i ≤ t, let
(e

(i)
1 , . . . , e

(i)
ni ) be the type of the restriction of ϕr to the characteristic invariant subspace

associated to Ni. We say that P has type:

(N1, (e
(1)
1 ), . . . , e(1)

n1
), . . . , (Nt, (e

(t)
1 , . . . , e(t)

nt )).

As we have seen before, if P ∈ k[X,σ] is a monic polyomial, then the set of all fac-
torizations of P as a product of monic irreducible polynomials is in bijection with the
Jordan-Hölder sequences for the ϕ-module DP . It is also in bijection with all bases of DP

in which ϕr has Jordan form. This can be described in terms of the types of some factors
of P , as we are going to explain now.

First, we assume that N (P ) = N e with N ∈ kσ[Xr] irreducible. Let (e1, . . . , en) be the
type of P . We denote by V the representation associated to DP , with g the endomorphism
through which σr acts on V . If W is any nonzero irreducible invariant subspace of V , the
action of g on W is given by the companion matrix of N in some basis. Let (a1, . . . , am)
be the dual sequence of (e1, . . . , en) as defined in Remark 1.4.13.

Lemma 1.4.15. Let δ = degN . Let 1 ≤ i ≤ m such that i = m or ai > ai+1. Let i0 be the
smallest j such that aj = ai. Then there are qδ(i−1)+qδi+· · ·+qδ(i0−1) invariant irreducible
subspaces V ′ of V such that the quotient V/V ′ has a type whose dual is (a1, . . . , ai −
1, ai+1, . . . , am) (or (a1, . . . , am−1) if i = m and am = 1).

11



Proof. Denote by (ε1,1, . . . , ε1,δ, ε2,1, . . . , ε2,δ, . . .) a basis of V in which the matrix of g has
Jordan form. More precisely, for all 1 ≤ i ≤ m, and for all 1 ≤ j ≤ ti and 1 ≤ l ≤ δ, we
have g(εj,l) = εj,l+1 if (j, l) is not of the shape (j, 1) for some integer j ≥ 2, or of the shape
(j, δ) for some integer j ≥ 1, g(εj,1) = εδu,δ + εδu+1,2 if j ≥ 2, and g(εj,δ) =

∑δ
l=1 αlej,l,

where
∑δ

l=1 αlX
r(l−1) = N (it is the characteristic polynomial of the induced endomor-

phism on any irreducible invariant subspace).
There are i0 − 1 Jordan blocks of g whose length is greater than the length of the i-th
block. For λ = (λ1,1, . . . , λ1,δ, . . . , λi0−1,δ) ∈ kσδ(i0−1), let vλ = ei0,1 +

∑i0−1
j=1

∑δ
l=1 λj,lej,l.

Since two such vectors vλ, vµ are not colinear, they generate distinct invariant subspaces
Vλ, Vµ, which are clearly isomorphic to W . Moreover, the quotient V/Vλ has the same
type as V/V(0) because the map V → V that sends εi0,1 to vλ and is the identity outside
the invariant subspace generated by εi0,1 is an isomorphism (its matrix is upper triangu-
lar). One can build the same way invariant subspaces with quotients of the same type as
generated by vectors of the shape εi0+1,1 +

∑i0
j=1

∑δ
l=1 λj,lεj,l, . . . , εi,1 +

∑i−1
j=1

∑δ
l=1 λj,lεj,l.

There are exactly qδi0−1 + · · ·+ qδi−1 invariant subspaces that are built in this way. Doing
such constructions for each i′ satisfying the hypotheses of the lemma, we get exactly qδm−1

qδ−1
irreducible invariant subspaces, which means all of them. Among these subspaces, the ones
for which the quotient has the requested shape are exactly the qδ(i0−1) + · · ·+ qδ(i−1) built
for the first i we considered. This proves the lemma.

In order to compute the number of Jordan-Hölder sequences of g, consider the following
diagram:

1 qδ . . . qδ(m−1)

a1 a2 . . . am

with a1 ≥ . . . ≥ am. An admissible path is a transformation of this table into another table
1 qδ . . . qδ(m

′−1)

a′1 a′2 . . . a′m′ such that

• either m′ = m− 1, a′j = aj for 1 ≤ j ≤ m− 1, if am = 1;

• or m′ = m, a′j = aj for all j 6= i, with 1 ≤ i ≤ m such that ai > ai+1.

To such a path γ, we affect a weight w(γ), which is the sum of the coefficients written
above the cells of the first table containing the same number ai as the cell whose coefficient
was lowered in the second table. Here is an example of a table and all the admissible paths
with the corresponding weights:

1 qδ q2δ q3δ

3 2 2 1

1

ww
qδ+q2δ

��

q3δ

&&
1 qδ q2δ q3δ

2 2 2 1

1 qδ q2δ q3δ

3 2 1 1

1 qδ q2δ

3 2 2

By lemma 1.4.15, the weight of an admissible path from one table to another, is the number
of irreducible invariant subspaces of an endomorphism g with type whose dual is given by
the first table such that the quotient has the type given by the second table. Therefore, a
sequence of admissible paths ending to an empty table represents a class of Jordan-Hölder
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sequences. Thus the number of distinct sequences in this class is the product of the weights
of the paths along the sequence. Hence, the number of Jordan-Hölder sequences for g is∑

(γ1,...γτ )

∏τ
i=1w(γi) the sum being taken on all sequences (γ1, . . . , γτ ) of admissible paths

ending at the empty table (so τ =
∑m

j=1 aj).

Corollary 1.4.16. Let P ∈ k[X,σ] be a monic étale polynomial of dual type (a1, . . . , am).
Then the number of factorizations of P as a product of monic irreducible polynomials is∑

(γ1,...γτ ) admissible

τ∏
i=1

w(γi).

Example 1.4.17. If P has type (e) (so that its dual type is (1, . . . , 1)), then there is only
one admissible path, and the number of factorizations is [qδ]e =

∏e
i=1

qδi−1
qδ−1

.

Example 1.4.18. If P has type (1, . . . , 1), (so that its dual type is (a)), there is only
one admissible path, and only one factorization. The formula also shows that polynomials
of this type are the only ones that have a unique factorization. These polynomials have
already been studied for their interesting properties, under the name of lclm-indecomposable
(see [Jac43], Chap. 3, Th. 21 and 24 for properties, and [BU12] for applications).

For the general case, there is no such nice formula, but we can still explain how to
get the number of factorizations. By the Chinese remainders Theorem, V is a direct sum
of invariant subspaces on which the induced endomorphisms have minimal polynomial
that is a power of an irreducible. Here, the type of g is defined again as the data of
((W1, T1), . . . , (Ws, Ts)) where the Wl’s are the distinct classes of irreducible invariant
subspaces of V , and the Tl’s are the tables representing the types of the endomorphisms
induced on the corresponding subspaces of V . The notion of dual type can be defined as
previously, as well as the notion of admissible path.

Proposition 1.4.19. Let g be an endomorphism of an Fq-vector space V . Assume that
the dual type of g is ((W1, T1), . . . , (Ws, Ts)). Denote by δi the dimension of Wi, and by τi
the sum of the coefficients in table Ti. Then the number of Jordan-Hölder sequences of g
is

(τ1 + · · ·+ τs)!

τ1! · · · τs!
∏

(Γ1,...,Γs)

w(Γ1) · · ·w(Γs),

the product being taken over all the s-uples (Γ1, . . . ,Γs) of admissible path sequences ending
at the empty tables.

Proof. From a chain of admissible paths ending at ((W1, ∅), . . . , (Ws, ∅)), it is possible to
extract its Wl-part Γl for all 1 ≤ l ≤ s. By definition, it is the sequence of all the paths
involving a change in the table associated to Wl. Such a chain is a sequence of admissible
paths from Tl ending at the empty table. It is clear that the weight of the path sequence
is the product of the weights of the Γl’s. Therefore, it does not depend on the way the Γl’s
were combined together. The admissible path sequences that end at ((W1, ∅), . . . , (Ws, ∅))
are all the different ways to recombine admissible path sequences from all the (Wi, Ti)
to the empty table. The weight of such a sequence is the product of the weights of the
Wl-parts. There are as many recombinations as anagrams of a word that includes τl times
the letter Wl for all 1 ≤ l ≤ s, τl being the sum of the integers appearing in Tl. The result
then follows directly from the previous discussion an the fact that the number of anagrams
of a word that includes τl times the letter Wl is the multinomial coefficient (τ1+···+τs)!

τ1!...τs!
.
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Example 1.4.20. Assume g has dual type ((W1, (a1)), . . . , (Ws, (as))). It is easy to see
that the only admissible path sequence for (Wl, (tl)) has weight 1. Hence the number of
Jordan-Hölder sequences of g is (a1+···+as)!

a1!...as!
. This generalizes remark 1.4.18

Corollary 1.4.21. Let P ∈ k[X,σ] monic étale. Let ((W1, T1), . . . , (Ws, Ts)) be the type
of P . Then the number of factorizations of P as a product of monic irreducible polynomials
is

(τ1 + · · ·+ τs)!

τ1! · · · τs!
∏

(Γ1,...,Γs)

w(Γ1) · · ·w(Γs),

the product being taken over all the s-uples (Γ1, . . . ,Γs) of admissible path sequences ending
at the empty tables.

In the next section, we describe an algorithm for counting the number of factorizations
of a skew polynomial relying on this theory.

Remark 1.4.22. If N (P ) is a power of an irreducible commutative polynomial N , say
N (P ) = Na, then the type of P can be determined as follows: let P1 = P , and for i ≥ 1,
define Q1 = rgcd(Pi, N) and Pi = Pi+1Qi. Let m be minimal such that Qm+1 = 1. Then
for all 1 ≤ i ≤ m , N (Qi) = N ei for some integer 1 ≤ ei ≤ r, and the type of P is
(e1, . . . , em). The type can also be determined by looking at the degrees of the successive
rgcd’s of P with N,N2, N3, . . .

2 Computational aspects

This section deals with several computational aspects of skew polynomial rings. In the
first part, we describe algorithms for arithmetics in these rings: multiplication, Euclidean
division, gcd’s and lcm’s, and we give their complexities. Then, we give algorithms to
compute the reduced norm of a skew polynomial as defined in the theoretical part. We use
these algorithms and some other theoretical results to give a fast factorization algorithm.
We give a detailed computation of the complexity of this algorithm. Finally, we describe
algorithms for factorization-counting and random factorizations.

Throughout this section, we will use the following notations:

• MM(n) is the number of operations (in kσ) needed to compute the product of two
n× n matrices with coefficients in kσ.

• SM(n, r) is the number of operations (in kσ) needed to multiply two skew polynomials
with coefficients in k of degree at most n.

We recall that we have proved in §2.1.1 that one can take SM(n, r) = Õ(nr2). Re-
garding matrix multiplication, the naive algorithm gives MM(n) = O(n3) but it is well
known that this complexity can be improved. For instance, using Strassen’s algorithm,
one have MM(n) = O(nlog2 7). Today, the best known asymptotic complexity for matrix
multiplication is due to Vassilevska Williams [Wil12] and is about O(n2.3727).

We use the common Õ notation: if f and g are two real functions defined on the integers,
we say that f(n) = Õ(g(n)) if there is some integer m such that f(n) = O(g(n) logm(n)).

We also assume that all usual arithmetics with polynomials can be done in quasilinear
time. In particular, we assume that all usual operations (basically addition, multiplication
and inverse) in an extension of kσ of degree d requires Õ(d) operations in kσ. We refer to
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[GG03] for a presentation of algorithms having these complexities. Regarding the Frobenius
morphism on k, we assume that all the conjugates of an element a ∈ k can be computed
in O(r2) operations in kσ.

2.1 Fast arithmetics in skew polynomial rings

This section is dedicated to basic algorithms for arithmetics in skew polynomial rings.

2.1.1 Multiplication

Let A,B ∈ k[X,σ], both of degree ≤ d. We give several algorithms to compute the product
AB and we compare their complexities.

The classical algorithm Let us recall that the classical algorithm of [Gie98], Lemma
1.1 (which throughout this section will be referred to as “Giesbrecht’s algorithm”) has
complexity Õ(d2r + dr2). This algorithm uses the explicit formula for the coefficients
of the product of two skew polynomials: if A =

∑d1
i=0 aiX

i and B =
∑d2

i=0 biX
j , then

their product is
∑d1+d2

i=0

(∑i
j=0 ajσ

j(bi−j)
)
Xi. For each coefficient bi of B, the list of the

images of bi under all the powers of σ can be computed in O(r2) operations in kσ. Hence,
all the σj(bi−j) that may appear in the above formula can be computed in Õ(d2r

2). Once
we have these coefficients, it remains to compute the product, which is done with O(d1d2)
operations in k, so the total complexity is Õ(d2r

2 +d1d2r). To write it more simply, if both
polynomials have degree less than d, then their product can be computed in Õ(d2r+ dr2)
operations in kσ.

Reduction to the commutative case Here, we use fast multiplication for commutative
polynomials to multiply skew polynomials. Write A =

∑r−1
i=0 AiX

i, with each Ai in k[Xr].
For 0 ≤ i ≤ r− 1, we denote by B(i) the skew polynomial deduced from B by applying σi

to all coefficients. Then we have:

AB =
r−1∑
i=0

AiB
(i)Xi.

Since Ai ∈ k[Xr], it is easy to see that the product AiB(i) is the same as the product of
these polynomials computed in k[X]. The algorithm is the following:

1. Compute the B(i).

2. Compute all the products AiB(i).

3. Compute the sum AB =
∑r−1

i=0 AiB
(i)Xi.

Lemma 2.1.1. The number of operations needed in kσ for the multiplication of two skew
polynomials of degree at most d by the above algorithm is Õ(dr2).

Proof. We may assume that both A and B have degree d. For step 1., we need to compute
all the conjugates of the d coefficients of B, which can be done in O(dr2) operations in kσ.
The multiplications of step 2. as multiplications of elements of k[X] can be done in Õ(d)
multiplications of elements of k, which corresponds to Õ(dr) operations in kσ. The total
complexity of this step is then Õ(dr2) operations in kσ. Finally, there are less than 2dr
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additions of elements of k to do in step 3., which is done in O(dr2). The global complexity
is therefore Õ(dr2).

Remark 2.1.2. This complexity is apparently better than those of Giesbrecht’s algorithm
(the term dr2 has gone) but we want to note that Giesbrecht’s algorithm can beat this
“commutative method” if the degree of B is much more less than the degree of A. Indeed, in
that case the dominant term in Giesbrecht’s complexity is d1d2r which can be competitive
with d1r

2 if r is large compared to d2.

We are now going to present two variants of Karatsuba’s multiplication to the noncom-
mutative case. Actually, it will turn out that the resulting algorithms are asymptotically
slower than the “commutative method”; nevertheless, we believe that they can be better in
some cases and, for this reason, we include them in this paper.

The plain Karatsuba method Let A,B ∈ k[X,σ]. Write A = A0 + XmrA1 and
B = B0 +XmrB1, with m = bmax{degA,degB}

2r c. We can then write:

AB = C0 +XmrC1 +X2mrC2,

with C0 = A0B0, C1 = A0B1 + A1B0 and C2 = A1B1, because Xmr lies in the center of
k[X,σ]. If we set P = (A0 +A1)(B0 +B1), we get the fact that C1 = P −C0−C2. Hence,
we can recover the product AB doing the 3 multiplications C0 = A0B0, C2 = A1B1 and
P = (A0 + A1)(B0 + B1). Let MS(d) be the number of multiplications needed in kσ to
multiply two elements of k[X,σ] of degree ≤ d using this method. We get:

SM(d, r) ≤ 3 · SM
(
d

2

)
≤ 3

log(d/r)
log 2 · SM(r).

Hence, this method allows to multiply polynomials of degree ≤ d in time O
(

(dr )
log 3
log 2SM(r)

)
provided that d > r. Using Giesbrecht’s algorithm for multiplication of skew polynomials
of degree < r, we get a complexity of O

(
d

log 3
log 2 r

3− log 3
log 2

)
, which is around O

(
d1.58r1.41

)
.

The Karatsuba-and-matrix method The previous Karatsuba method relies on the
classical multiplication for polynomials of degree < r. Here, we propose another fast
multiplication method for polynomials of degree up to r2/2, that can be combined with
the Karatsuba method.

Let N ∈ kσ[Xr] be the defining polynomial of the extension k/kσ. We will denote by t
a root of N in k. By Lemma 1.2.3, the ϕ-module k[X,σ]/N is isomorphic toMr(k). Here,
the isomorphism can be given explicitely. Indeed, the isomorphism of this Lemma maps
A ∈ k[X,σ]/N to the matrix of the right multiplication by A in some basis of the k-vector
space k[X,σ]/N . Let us choose the basis 1, X, . . . ,Xr−1. If a ∈ k, the matrix of the right
multiplication by a is given by:

Ma =


a 0 · · · 0

0 σ(a)
. . .

...
...

. . . . . .
...

0 · · · 0 σr−1(a)

 .
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The matrix of multiplication by X is:

MX =


0 1 · · · 0

0
. . . . . . 0

...
. . . . . . 1

t · · · 0 0

 .

So, if A =
∑r2−1

i=0 aiX
i ∈ k[X,σ], the image of A (mod N) can be computed easily by the

previous isomorphism. More precisely, write A =
∑r−1

i=0 AiX
i with Ai ∈ k[Xr] of degree

< r. Then the matrix of mA is:

MA =


A0(t) σ(Ar−1)(t) · · · σr−1(A1)(t)

tA1(t) σ(A0)(t) · · ·
...

...
. . . . . . σr−1(Ar−1)(t)

tAr−1(t) · · · tσr−2(A1)(t) σr−1(A0)(t)

 .

The matrix MA can be computed as follows. We first evaluate all the polynomials
Ai’s at all the conjugates of t. Using efficient algorithms (see [GG03], §10), it requires
Õ(r3) operations in kσ. We can then compute σj(Ai)(t) by applying σj to Ai(σ−j(t)).
Computing all these quantites requires Õ(r4) further operations in kσ. Then to obtain
MA, it remains to multiply some of the previous coefficients by t, which requires at most
Õ(r3) further operations in kσ. Computing MA can then be done with complexity Õ(r4).

We can go in the other direction following the same ides. We first divide by t all
coefficients above the diagonal of MA. We then apply σ0 to the first column, σr−1 to the
second column, . . ., σ to the last column and, finally, recover the Ai’s by interpolation. As
before, the complexity is Õ(r4) operations in kσ.

Once noticed these facts, the idea is quite simple: let A,B ∈ k[X,σ] of degree < r2/2.
We compute the corresponding matrices MA,MB, then the product MAMB and finally
recover the coefficients of (the reduction modulo N) of AB. This whole algorithm can be
done in Õ(r4) operations in kσ.

Combining this with Karatsuba multiplication (but using this as soon as we hit poly-
nomials of degree < r2/2), we get:

SM(d, r) = Õ
(
( d
r2

)
log 3
log 2 · SM( r

2

2 , r)
)

= Õ(d
log 3
log 2 r

4− 2 log 3
log 2 )

provided that d > r2. This is about Õ(d1.58r0.83).

Remark 2.1.3. The most expensive step of the previous algorithm is the application
of the Frobenius. Hence, if we are working over a finite field where applying Frobenius
can be done efficiently, our complexity may decrease to O(r ·MM(r)) — which beats the
“commutative method”. If we take MM(r) = O(r2.3727), the resulting final complexity
becomes Õ(d1.58r0.2).

2.1.2 Euclidean division

Let A,B ∈ k[X,σ] with degA ≥ degB. We want to compute the right-Euclidean division
of A by B:

A = QB +R,
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with degR < degB. The following algorithm is based on the Newton iteration process
presented for example in [GG03], §9.1, which uses reciprocal polynomials. Our algorithm
is an almost direct adaptation of it, the only subtlety here is that the map sending a skew
polynomial to its reciprocal polynomial is not a morphism.

Lemma 2.1.4. For n ≥ 0, we denote by k[X,σ]≤n the subspace of skew polynomials of
degree at most n. Let

τn : k[X,σ]≤n → k[X,σ−1]≤n
n∑
i=0

aiX
i 7→

n∑
i=0

an−iX
i .

Then τn is k-linear, bijective, and for all P,Q ∈ k[X,σ], with degP ≤ n and degQ ≤ m,
we have:

τn(P )τm(Q(n)) = τm+n(PQ).

Proof. The k-linearity is trivial, as well as bijectivity. Let P =
∑n

i=0 aiX
i and Q =∑m

j=0 bjX
j . Then the coefficient of X l in the product PQ is

cl =
∑
i+j=l

aiσ
i(bj).

Hence, the coefficient of X l in τm+n(PQ) is cn+m−l =
∑

i+j=l an−iσ
n−i(bm−j). This is

clearly the coefficient of X l in the product τn(P )τm(Q(n)), computed in k[X,σ−1].

Let us now describe the Euclidean division algorithm. Let n = degA and m = degB.
According to the previous formula, if A = QB +R is the right-Euclidean division of A by
B, we have:

τn(A) = τn−m(Q)τm(B(n−m)) + τn(R).

Since degR < m, τn(R) is divisible by Xn−m+1. The idea is to compute an approximation
of the left-inverse of B̃ = τm(B(n−m)) in k[[X,σ−1]] (the ring of skew power series, which is
defined in the obvious way, and is only used here to sketch the idea of the algorithm). Once
we get such an approximation Q̃, truncated at precision Xn−m, we know that τn(A)Q̃B̃−
τn(A) ∈ Xn−mk[X,σ−1], and by applying τ−1

n , we get the quotient Q.
Computing successive approximations of Q̃ is done by Newton iteration: let B0 be the

constant coefficient of B̃, we define Q̃0 = B−1
0 , and Q̃i+1 = 2Q̃i − Q̃iB̃Q̃i, truncated at

X2i .

Lemma 2.1.5. For all i ≥ 0, Q̃iB̃ − 1 ∈ X2ik[X,σ−1].

Proof. The proof goes by induction on i. By construction, Q̃0B̃ − 1 ∈ Xk[X,σ−1]. Now
assuming that the result is true for some i ≥ 0, we have:

Q̃i+1B̃ − 1 = 2Q̃iB̃ − Q̃iB̃Q̃iB̃ − 1 = −(1− Q̃iB̃)2 ∈ X2i+1
k[X,σ−1]

and we are done.

Proposition 2.1.6. The algorithm REuclideanDivision returns the quotient and remain-
der of the right-division of A of degree n by B of degree m in Õ(SM(n, r)) operations in
kσ.
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Algorithm 1: REuclideanDivision
Input: A,B ∈ k[X,σ] with degA ≥ degB
Output: Q,R ∈ k[X,σ] with degR < degB such that A = QB +R

1 n = degA; m = degB;
2 B̃ = τm(B(n));
3 Q̃ = Coefficient(B̃, 0)−1;
4 i = 1;
5 while i < n−m+ 1 do
6 Q̃ = 2Q̃− Q̃(B̃ (mod Xi))Q̃ (mod X2i);
7 i = 2i;

8 Q̃ = (τn(A) (mod Xn−m))Q̃ (mod Xn−m);
9 Q = τ−1

n−m(Q̃);
10 R = A−QB;
11 return Q,R;

Proof. We have already seen that the result of this algorithm is correct. In order to compute
B̃, O(mr2) operations are needed. The while loop in the algorithm has log2(n −m + 1)
steps, and at the i-th step, we compute the product of skew polynomials of degree 2i, so
the global complexity of this is

∑log2(n−m+1)
i=0 SM(2i, r) = Õ(SM(n − m, r)). Computing

(τn(A) (mod Xn−m))Q̃ has the same complexity. Finally, we compute the product QB in
SM(maxm,n−m, r) operations, and R = A−QB in Õ(SM(n, r)) operations.

2.1.3 Greatest common divisors and lowest common multiples

This section describes an algorithm adapted directly from Algorithm 11.4 of [GG03], to
compute the right-gcd R of two skew polynomials A and B, together with skew polynomials
U, V such that UA+ V B = R. As we have seen before, this also gives almost directly the
left-lcm of A and B.

This algorithm relies on the fact that in the Euclidean division, the highest-degree
terms of the quotient only depend on the highest-degree terms of the dividend and divisor.
If A ∈ k[X,σ] and n ∈ N, with A =

∑d
i=0 aiX

i of degree d, we set A(n) =
∑n

i=0 ad−iX
n−i,

with the convention that aj = 0 for j /∈ {0, · · · , d}. Then, for n ≥ 0, A(n) is a skew
polynomial of degree n, and for n < 0. Note that for all i ≥ 0, (AXi)(n) = A(n).

Definition 2.1.7. If A,B,A∗, B∗ ∈ k[X,σ] with degA ≥ degB and degA∗ ≥ degB∗,
and n ∈ Z, we say that (A,B) and (A∗, B∗) coincide up to n if

1. A(n) = A∗(n),

2. B(n−(degP−degQ)) = B∗(n−(degP ∗−degQ∗))

Then we have the following:

Lemma 2.1.8 ([GG03], Lemma 11.1.). Let n ∈ Z, (A,B) and (A∗, B∗) ∈ (k[X,σ] \ {0})2

that coincide up to 2n, with n ≥ degA − degB ≥ 0. Define Q,R,Q∗, R∗ as the quotient
and remainder in the right-divisions:

A = QB +R, with degR < degB,
A∗ = Q∗B∗ +R∗ with degR∗ < degB∗.
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Then Q = Q∗, and either (B,R) and (B,R∗) coincide up to 2(n − degQ) or R = 0 or
n− degQ < degB − degR.

Now, we want to carry this approximation further down the sequence of quotients when
doing the Euclidean algorithm. For A0, A1, A

∗
0, A

∗
1 ∈ k[X,σ] monic, with degA0 > degA1

and degA∗0 > degA∗1, we write:

A0 = Q1A1 + ρ2A2, A∗0 = Q∗1A
∗
1 + ρ∗2A

∗
2,

...
...

Ai−1 = QiAi + ρi+1Ai+1, A∗i−1 = Q∗iA
∗
i + ρ∗i+1A

∗
i+1,

...
...

A`−1 = Q`A`, A∗`∗−1 = Q∗`∗A
∗
`∗ ,

with for all i, degAi+1 < degAi, with ρi ∈ k× and Ai monic. From this sequence, we
define for 1 ≤ i ≤ `, mi = degQi, ni = degAi, and for n ∈ N,

η(n) = max

0 ≤ j ≤ ` |
∑

1≤i≤j
mi ≤ n

 .

We define analogously m∗i , n
∗
i and η∗. Then the following lemma quantifies how much the

first results in the Euclidean algorithm only depend on the highest-power terms of the
entires;

Lemma 2.1.9 ([GG03], Lemma 11.3.). Let n ∈ N, h = η(n) and h∗ = η∗(n). If (A0, A1)
and (A∗0, A

∗
1) coincide up to 2n, then h = h∗, Qi = Q∗i and ρi+1 = ρ∗i+1 for 1 ≤ i ≤ h.

Let us now describe the extended Euclidean Algorithm.
Algorithm 2: FastExtendedRGCD
Input: A0, A1 ∈ k[X,σ] monic, n0 = degA0 ≥ degA1 = n1 and n ∈ N with

0 ≤ n ≤ n0.

Output: M ∈M2(k[X,σ]) such that M
(
A0

A1

)
=

(
Ah
Ah+1

)
with h = η(n).

1 if A1 = 0 or n < n0 − n1 then return 0,
(

1 0
0 1

)
;

2 d = bn/2c;
3 R = FastExtendedRGCD(R0(2d), R1(2d−(n0−n1)), 2d, 2d− (n0 − n1), d);

4

(
A′0
A′1

)
= R

(
A0

A1

)
;
(
n′0
n′1

)
=

(
degA′0
degA′1

)
;

5 if A′1 = 0 or n < n0 − nj then return R;
6 Qj = A′0/A

′
1; ρ′2 = LeadingCoefficient(A′0 mod A′1);

7 A′2 = (ρ′2)−1(A′0 mod A′1); n′2 = degA′2;
8 d∗ = n− (n0 − n′1);
9 S = FastExtendedRGCD(A′1, A

′
2, 2d

∗, 2d∗ − (n′1 − n′2), d∗);

10 Mj =

(
0 1

(ρ′2)−1 (ρ′2)−1Qj

)
;

11 return S ·Mj ·R;
When executed for n = n0, the above algorithm gives an immediate way to compute the

right-gcd and left-lcm of A0 and A1. Indeed, in this case, we get a matrix M =

(
U0 U1

V0 V1

)
such that U0A0 + U1A1 = rgcd(A0, A1), and V0A0 = −V1A1 = llcm(A0, A1).
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Theorem 2.1.10 ([GG03], Theorem 11.5.). The algorithm FastExtendedRGCD works cor-
rectly and uses at most O(SM(n, r) log n) operations in kσ if A0 has degree d ≤ 2n. In
particular, it allows to compute the rgcd and llcm with Õ(SM(d, r)) operations in kσ.

Proof. The proof for correctness is exactly the same as the one in [GG03] and relies on
the previous two lemmas. Let us give more details about the complexity of the algorithm.
Denote by T (n0, n1, n) the time needed to call FastExtendedRGCD on two skew polynomials
A0, A1 of degrees n0, n1, with parameter n. Set d = bn0/2c. Then we have:

T (n0, n1) ≤ T (2d, 2d− (n0 − n1), d) + T (2d∗, 2d∗ − (nj − nj−1), d∗) +O(SM(d, r)).

The term SM(n0, r) here comes from the multiplications needed from matrix multipli-
cations (all the polynomials in these matrices have degree at most n0) and one due to
the Euclidean division algorithm. The result follows by induction from the fact that
d∗ = dn/2e.

2.2 Computing the norm

In this section, we give algorithms to compute the reduced norm of a skew polynomial. Let
N = Nk/kσ be the norm from k to kσ. Let P ∈ k[X,σ] of degree d. We give two different
ways to compute the norm, depending on whether d is greater or smaller than r. Let us
start with the first case, d < r:

Proposition 2.2.1 ([Jac96], Proposition 1.7.1). Let P ∈ k[X,σ] of degree d < r, P =∑d
i=0 aiX

i. Then

N (P ) = (−1)rdN(a0) + (−1)r(d−1)N(a1)Xr + · · ·+N(ad)X
rd.

This Proposition gives a direct way to compute N (P ): this is done by computing the
norms of its d coefficients. Since all the conjugates of an element of k can be computed
in Õ(r2) operations in kσ, and the product of r elements of k requires Õ(r2) operations in
kσ, the norm of an element of k can be computed in Õ(r2) operations in kσ. Hence, by
Proposition 2.2.1, we get an algorithm to compute N (P ) in Õ(dr2) operations in kσ when
r < d.

Let us now address the case d ≥ r. We use the fact that N (P ) is the determinant of
multiplication by Xr on DP , seen as a k[Xr]-module. Let t ∈ k be a primitive element
over kσ, and let πt ∈ kσ[Xr] be its minimal polynomial over kσ. Let R0 ∈ kσ[Xr] be
a polynomial of degree n > d/r. Let R be the polynomial obtained by composition:
R = πt ◦R0. We work in the ring A = kσ[Xr]/R.

The idea is the following: if R is irreducible, then A is a field extension of kσ, and
there is a natural embedding of k into A, mapping t to R0. Then we can write the matrix
of multiplication by P in k[X,σ] seen as a module over k[Xr], and map it to a matrix
with coefficients in A. Then we can compute the determinant of this matrix, which is the
image ν of the norm of P by the map k[Xr] → A. Since it is known to be a polynomial
with coefficients in kσ of degree d, and since [A : kσ] > d, the coefficients of the N (P ) are
exactly the coefficients of ν written in the canonical basis of A.

Actually, all of the above still holds if A is not a field, except that we may not use algo-
rithms for determinants over fields to compute ν. However, we can still obtain this determi-
nant efficiently by computing the Hermite normal form of the matrix of multiplication by P
in the Euclidean domain A. So in practice, all we have to do is write the matrix of multipli-
cation by P as a matrix with coefficients in k[Xr]. Write P = P0 +P1X+ · · ·+Pr−1X

r−1.
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As stated in the proof of Lemma 1.4.1, in the canonical basis 1, X, . . . ,Xr−1, the matrix
of multiplication by P is:

P0 Xrσ(Pr−1) . . . . . . Xrσr−1(P1)

P1 σ(P0)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . Xrσr−1(Pr−1)

Pr−1 · · · · · · · · · σr−1(P0)


.

We map this matrix to A by taking Xr to its residue class modulo R, and t to R0 (mod R).
Then, we compute its determinant ν (using Smith normal form), and we can read the
coefficients of N (P ) on ν.

If P has degree d, the complexity of these operations is: O(dr2) operations to compute
all the conjugates of the Pi’s under the action of the Frobenius. Multiplication by Xr is
free in k[Xr]. This yields a total of O(dr2) operations to compute the matrix, and then
O(dr3) operations in kσ to get its determinant. Hence, P can be computed in O(dr3)
operations in kσ.

To sum it up, if r < d, then we can compute N (P ) in O(dr2), and if r ≥ d, we can
compute it in O(dr3) operations in kσ.

2.3 A fast factorization algorithm

Let P ∈ k[X,σ] be a monic polynomial. Our aim is to give an algorithm to compute a
factorization of P as a product of irreducible skew polynomials. The idea of the algorithm
is to reduce that problem to the problem of factoring polynomials of type (e) (using rgcd’s
with factors of the norm of P ) and then to factor polynomials of type (e). For the sake of
brevity, in the algorithms we will use the notation A/B for the quotient of the right-division
of A by B.

Reduction to the type-(e) case
The following algorithm recursively computes the rgcd of a polynomial P with a central

polynomial (whose irreducible factors are all irreducible factors of N (P )) and writes it as
a product of polynomials of type (e) (for some integer e depending on the factor).

Factoring a polynomial of type (e)
Let us now explain how to factor a polynomial P of type (e). Clearly, N (P ) = N e with

N ∈ kσ[Xr] irreducible. In this case, we know that P is a divisor of N , we write PQ = N
and will work with k[X,σ]Q/(N) rather than k[X,σ]/k[X,σ]P . Let R ∈ k[X,σ]Q/(N).
Right-multiplication by R is an endomorphism of k[X,σ]Q/(N) that is a E-vector space
of dimension e. Hence, there exist λ0, . . . , λe−1 ∈ E such that Re =

∑e−1
i=0 λiR

i. Now
assume that F (T ) = T e −

∑e−1
i=0 λiT

i ∈ E[T ] has a root α ∈ E. Then R − α is a zero-
divisor in k[X,σ]Q/(N). Indeed, α is an eigenvalue of multiplication by R, so there exists
some S ∈ k[X,σ]Q/(N) such that S(R − α) is zero in k[X,σ]Q/(N). Write R = R̃Q and
S = S̃Q, then S̃(QR̃ − α) is divisible by P , so that the right gcd of QR̃ − α is a divisor
of P . Moreover, if α is the only eigenvalue of the multiplication by R (with multiplicity
one), then this divisor is irreducible. We will see that this happens with good probability.
Once we get an irreducible factor, we can proceed recursively to factor P . However, we
can also use a slightly more efficient trick relying on the knowledge of an irreducible factor.
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Algorithm 3: Type_e_Factorization
Input: P ∈ k[X,σ], (N1, . . . , Nm) irreducible such that N (P ) =

∏
Ni, ordered by

nondecreasing degree
Output: P1,1, P1,2, . . . , P1,m1 , . . . , Pn,1, . . . , Pn,mn ∈ k[X,σ] and

N1, . . . , Nn ∈ kσ[Xr] irreducible such that P =
∏
i

∏
j Pi,j and each Pi,j

has type ej and norm N ej

1 d1 = degN1;
2 for 1 ≤ i ≤ m− 1 do di+1 = di + degNi+1;
3 d = dm; δ = d/ log d;
4 i = min{1 ≤ j ≤ m− 1 | dj > d+ δ/2};
5 if [d− δ/2, d+ δ/2] ∩ {d1, . . . , dm−1} = ∅ then
6 j = m;
7 while j ≥ i do
8 Pj = rgcd(P,Nj);
9 j = j − degPj/ degNj ;

10 P = P/Pj ;

11 return Type_e_Factorization(P, (N1, . . . , Ni−1)), {Pj | i ≤ j ≤ m};
12 else
13 M = Ni · · ·Nm;
14 Q1 = rgcd(P,M); Q2 = P/M ;
15 return Type_e_Factorization(Q2, (N1, . . . , Ni)),

Type_e_Factorization(Q1, (Ni, . . . , Nm));

Assume we know an irreducible right factor P1 of P , and write P = P2P1. Let R ∈ k[X,σ]
and let A = rgcd(P, P1QR). Now let B = llcm(A,P1) = B̃P1. Since P is a right multiple
of both P1 and A, B is a divisor of P . Hence, B̃ is a divisor of P2. In general, A and
B̃ should have the same degree as P1, yielding an irreducible factor of P2. The precise
probability study will appear in §2.4.2. The following two algorithms describe how to factor
a polynomial P of type (e): the first one finds one irreducible factor of P , and the second
one performs the "lcm trick" to factor P as a product of irreducibles given one irreducible
right factor.
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Algorithm 4: FirstFactor
Input: (P,N) ∈ k[X,σ]× kσ[Xr] such that of type (e), N (P ) = N e and N is

irreducible
Output: An irreducible right-divisor of P

1 E = kσ[Xr]/(N);
2 Q = N/P ;
3 while true do
4 R̃ = RandomElement(k[X,σ]/k[X,σ]P );
5 R0 = R̃Q;
6 for 0 ≤ i ≤ e− 1 do Ri+1 = R0Ri;
7 Find λ0, . . . , λe−1 ∈ E such that Re =

∑e−1
i=0 λiRi;

8 F (T ) = T e −
∑e−1

i=0 λiT
i;

9 if F has a simple root α in E then
10 P1 = rgcd(P,QR̃− α);
11 return P1;

Algorithm 5: FactorStep
Input: (P,N, P1) ∈ k[X,σ]× kσ[Xr] such that of type (e), N (P ) = N e, N is

irreducible and P1 is an irreducible right factor of P
Output: Irreducible polynomials P1, . . . , Pe such that P = Pe · · ·P1

1 Q = N/P ;
2 for 1 ≤ i ≤ e− 1 do
3 while true do
4 R = RandomElement(k[X,σ]/k[X,σ]P );
5 A = rgcd(P, P1QR);
6 B̃ = llcm(P1, A)/P1;
7 if degB = degP1 then
8 Pi = B̃;
9 break;

10 return P1, . . . , Pe;

Glueing together the three previous algorithms, we get a complete factorization algo-
rithm. We assume that the function Factorization returns the factorization of a (commu-
tative) polynomial as a product of irreducible polynomials ordered by their degrees.
Algorithm 6: SkewFactorization
Input: P ∈ k[X,σ]
Output: A list of irreducible polynomials (P1, . . . , Pm) such that P = Pm · · ·P1

1 N = N (P );
2 N1 · · ·Nm = Factorization(N);
3 (G1,1, . . . , Gn,mn) = Type_e_Factorization(P, (N1, . . . , Nm));
4 for 1 ≤ i ≤ m do
5 for 1 ≤ j ≤ mi do
6 Pi,j,1, . . . , Pi,j,eij = FactorizationStep(Gi,j , Gi);

7 return (Pi,j,l);
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2.4 Complexity

In this section, we analyze the complexity of the factorization algorithm. The complexity
will be expressed in terms of the degree d of the skew polynomial that is to be factored,
the degree r of k/kσ, and the cardinal q of kσ.

2.4.1 Complexity of the steps

Let us detail the complexity of the steps of our factorization algorithm.

Type-(e)-factorization We have the following lemma, giving the complexity of the al-
gorithm Type_e_Factorization.

Lemma 2.4.1. Let P ∈ k[X,σ] and let N1, . . . , Nm ∈ kσ[Xr] be irreducible polynomials
such that P divides N1 · · ·Nm in k[X,σ]. Then the algorithm Type_e_Factorization
applied to P and N1, . . . , Nm returns a correct result with Õ(dr3) operations in kσ.

Proof. Let us prove the result by induction on d. Let (N1, a1), . . . , (Nm, am) be the irre-
ducible polynomials that are given as arguments, and δi = degNi for 1 ≤ i ≤ m. We
assument that the Ni’s are ordered so that the sequence of δi is nondecreasing. There are
two cases to look at.

If there exists 1 ≤ i ≤ m and 1 ≤ a ≤ ai such that

i−1∑
j=1

ajδj + aδi ∈
[
d

2

(
1− 1

log d

)
,
d

2

(
1 +

1

log d

)]
,

then we choose the minimal (i, a) (for the lexicographical order) having this property. We
write Nl = Na

i

∏i−1
j=1N

aj
j , and Nr = N/Nl. Then we write Pr = rgcd(P,Nr), and define

Pl as the quotient in the right-division of P by Pr. The algorithm is then applied to
(Pl, Nl, (N1, a1), . . . , (Ni, a)) and (Pr, Nr, (Ni, ai − a), . . . , (Nm, am)).

The number of operations needed for this is denoted by C(d, r). In this case, we have:

C(d, r) ≤ 2C

(
d

(
1 +

1

log d

)
, r

)
+ Õ(SM(dr, r)).

Indeed, the operations we have to do before starting the recursive steps are: computing a
product of (commutative) polynomials in kσ[Xr] such that the sum of their degrees is less
than d

(
1 + 1

log d

)
, computing the right gcd of P with a polynomial of degree less than dr,

and dividing P by this gcd. The most expensive part is the computation of the gcd, and
it costs Õ(SM(dr, r)).

In the other case, there is no (i, a) such that

i−1∑
j=1

ajδj + aδi ∈
[
d

2

(
1− 1

log d

)
,
d

2

(
1 +

1

log d

)]
.

Hence, for (i, a) such that
∑i−1

j=1 ajδj + aδi >
d
2

(
1 + 1

log d

)
, we know that δi > d

log d , and
there are at most log d such couples (i, a). In this case, the algorithm is to compute Nl, Nr

as before, and then the successive gcd’s of P the Ni’s having the previous property, and
apply the algorithm with the last quotient Pl and Nl.
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There are at most log d rgcd’s of a skew polynomial of degree at most d with skew
polynomials of degree at most dr, which takes Õ(SM(dr, r)) operations, and all the other
computations are cheaper than this. Again, we have:

C(d, r) ≤ C

(
d

(
1 +

1

log d

)
, r

)
+ Õ(SM(dr, r))

≤ 2 · C
(
d

(
1 +

1

log d

)
, r

)
+ Õ(SM(dr, r)).

Let us assume that the Õ(SM(dr, r)) appearing in the above inequality is ≤ cdr3 logα d for
some constants c, α (we use the fact that SM(d, r) = Õ(dr2)). We are going to show that
there exists a constant c′ such that

C(d, r) ≤ c′dr3 logα+1 d.

We want to have:

C(d, r) ≤ 2c′
d

2

(
1 +

1

log d

)
r3 logα+1

(
d

2

(
1 +

1

log d

))
+ cdr3 logα d.

This implies that:

C(d, r) ≤ c′dr3 logα+1 d

(
1− log 2

log d
+O

(
1

log2 d

))α+1

+ c′dr3 logα d+ cdr3 logα+1 d.

If we choose c′ such that c′ + c− c′(α + 1) log 2 + O
(

1
log2 d

)
≤ 0 for d large enough, then

induction shows that for d large enough,

C(d, r) ≤ c′dr3 logα+1 d.

Since it is possible to choose such a c′, the proof is complete.

FirstFactor We shall detail the complexity of all the steps of this algorithm. In the
following, P has type (e) and norm N e, with e ≤ r. The degree of N as an element of
kσ[Xr] is δ, so that the degree of P is δe.

1. Compute Q ∈ k[X,σ] such that PQ = N . This Euclidean division can be done with
complexity SM(dr, r). Note that this step is done only once even if the loop fails to
find a divisor.

2. Choose a random element R ∈ k[X,σ]/k[X,σ]P and compute RQ, . . . , (RQ)e modulo
N . This requires emultiplications of skew polynomials of degree δr plus one reduction
modulo N at each step. After having remarked the reduction modulo N of a skew
polynomial is equal to its reduction modulo N in the ring of usual polynomials, we
see that it costs only Õ(δ2r) operations in kσ. The whole cost of this step is then
O(e · SM(δr, r)).

3. Find a linear dependence between the powers of RQ of the following for:

e∑
i=0

ai(RQ)i = 0. (1)
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where all ai’s are in E. Even though the element (RQ)i naturally live in a space of
dimension r2 over E, we know the first e of them are linearly dependent, and we can
work in a vector space of dimension e over E by projection. Hence, the complexity
of this step is δ ·MM(e).

4. Check whether the polynomial F (T ) =
∑e

i=0 aiT
i (where the ai’s are defined by

formula (1)) has a root in E. For this, it is enough to compute the gcd of F with
T#E − T . Noting that #E = qδ with q = #kσ, we can first compute T#E modulo
F (T ) by first raising T to the q-th power modulo F (T ) (using classical fast exponen-
tiation) and then performing O(log δ) modular compositions. Using Corollary 5.2
of [KU08], this can be done in Õ(δ log2 q + e1+ε(δ log q)1+o(1)) bit operations, for all
ε > 0 (the first term corresponds to the fast exponentiation and the second to the
modular compositions). It then remains to compute the gcd of two polynomials over
E of degree ≤ e, which can be achieved with Õ(eδ) more operations in kσ.

5. Compute the right gcd of P with a skew polynomial of degree δr, which costs
Õ(SM(δr, r)) operations in kσ. Note that this step is done only once even if the
loop fails to find a divisor.

Since any operation in kσ requires Õ(log q) bit operations, the total complexity of this
algorithm is

Õ(SM(δr, r) · e log q + MM(e) · δ log q + δ log2 q + e1+ε(δ log q)1+o(1))

bit operations. Using SM(n, r) = Õ(nr2) and MM(n) = O(n3) and noting that e ≤ r, this
becomes

Õ(δer3 log q + δ log2 q + e1+ε(δ log q)1+o(1))

for all ε > 0. We will see in §2.4.3 why the probability of failure is bounded from below
independently on the data of the problem.

FactorStep This algorithm computes a factorization of P (still of type (e)) when P ,
knowing a factor of P . The next irreducible factor is computed with one rgcd and one
llcm between polynomials of degree at most δr. This operation may fail (in which case, we
repeat it with a new random input) but we will see in the next section that the propability
of failure is very small. Hence, in order to compute the complexity, it is safe to assume
that failures never append. As it is shown in §2.1.10, this has complexity Õ(SM(δr, r)).
Hence the complexity of this step is Õ(δr3).

2.4.2 Global complexity

Let us sum up all the previous step complexities to give the complexity of the whole
factorization algorithm.

Theorem 2.4.2. The algorithm SkewFactorization runs in

Õ(dr3 log q + d log2 q + d1+ε(log q)1+o(1) + F (d, kσ))

bit operations to factor a skew polynomial of degree d. Here, F (d,K) denotes the complexity
of the factorization of a (commutative) polynomial of degree d over the finite field K.
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Proof. Computing the norm of P ∈ k[X,σ] of degree d takes O(dr3) operations in kσ.
Factoring the norm N (P ) (that has degree d as an element of kσ[Xr]) takes by definition
F (d, kσ) operations in kσ. Then, the algorithm Type_e_Factorization runs in Õ(dr3)
operations in kσ. Let P1, . . . , Pm be the factors of P obtained after Type_e_Factorization.
Assume that Pi has type ei and degree δiei. Then for each i, the factorization of Pi takes
Õ(δieir

3 log q + δiei log2 q + e1+ε(δ log q)1+o(1)) bit operations (it uses FirstFactor and
FactorStep). So, to factor P given its “type-(e)-factorization”, we need Õ(dr3 log q +
d log2 q + d1+ε(log q)1+o(1)) bit operations. Putting all the steps together, we get the
desired complexity.

Remark 2.4.3. Of course, this result is true provided that the probabilities of success of
the probabilistic parts of the algorithm are bounded from below independently of d and r.
This is what we will show in the next part.

2.4.3 Probability of finding a factor

The function FactorStep finds an irreducible factor of P whenever the random endo-
morphism "multiplication by R" has exacly one (simple) eigenvalue in E. By Corollary
1.4.8, if R is uniformly distributed in k[X,σ]Q/(N), then mR is uniformly distributed in
End(k[X,σ]Q/(N)). Therefore, we want to evaluate the probability for an endomorphism
of a E-vector space of dimension e to have a unique eigenvalue in E.

Let Bd be the probability that a d× d matrix with coefficients in E has 0 as a simple,
unique eigenvalue in E. Obviously, setting q = #E, this is 1

q times the probability that a
d× d matrix has a simple, unique eigenvalue in E. We can write:

qd
2
Bd = #P(Ed) · qd−1q(d−1)2 ·Ad−1 =

1− 1
qd

1− 1
q

· Ad−1

q
.

where Ai denotes the probability that a i×i matrix with coefficients in E has no eigenvalue
in E.
Let us now detail how to obtain a bound on Ai. By [NP98], Theorems 4.1 and 4.2, we get
the formula for the generating series:

+∞∑
i=0

Aiz
i =

1

1− z
G(z)

where G(z) =
∏+∞
i=1

(
1− z

qi

)q−1
. If we write G(z) =

∑
iCiz

i, then for all i ≥ 0, Ai =∑i
j=0(−1)jCj .

Lemma 2.4.4. We have the following formulas:

• A0 = C0 = 1

• C1 = 1

• C2 = q
2(q+1)

Proof. The first two assertions follow easily from identifying the coefficients of 1 and z in
the power series G. For the third formula, identifiying the coefficient of z2 gives:

C2 =

+∞∑
i=1

(q − 1)(q − 2)

2q2i
+
∑
i<j

(q − 1)2

qi+j
.

28



The result then follows from the usual formulas for sums of geometric progressions.

Next, remark that:

+∞∑
i=0

Ci =
∏
i≥1

(
1 +

1

qi

)q−1

and
+∞∑
i=0

(−1)iCi =
∏
i≥1

(
1− 1

qi

)q−1

.

Combining both expressions, we get:

2 ·
+∞∑
i=0

C2i+1 =
∏
i≥1

(
1 +

1

qi

)q−1

−
∏
i≥1

(
1− 1

qi

)q−1

.

Studying the function q 7→
∏
i≥1(1 + q−i)q−1 −

∏
i≥1(1 − q−i)q−1 are non-decreasing,

we find that the the sum
∑+∞

i=0 C2i+1 is smaller than its limit when q goes to infinity:

+∞∑
i=0

C2i+1 ≤
1

2

(
e− 1

e

)
.

Now, it is clear that for all i ≥ 0, Ai ≥ C0 + C2 −
∑+∞

i=0 C2i+1 = 1 + q
2(q+1) −

1
2

(
e− 1

e

)
.

Note that this quantity is ≥ 0.15 for all q, and ≥ 0.3 when q ≥ 23.

2.4.4 Probability of finding another factor

As usual, we assume that P is a right-divisor of N ∈ kσ[Xr] irreducible, with N (P ) = N e

and degN = δ. We have seen that once we know an irreducible factor of P , there is an
easy way to factor it without using FirstFactor again. The following lemma makes this
more precise:

Lemma 2.4.5. Let P = P2P1 with P1 irreducible and P2 reducible, and let R be a random
variable following the uniform distribution on k[X,σ]. Let A = rgcd(P, P1QR) and B =
llcm(A,P1) = B̃P1. Then the probability that B̃ is an irreducible right factor of P2 is at
least 1− 1

qδ(e−1)

Proof. We work in k[X,σ]/N . Remark then that AQ = rgcd(N,P1QRQ) and that
B = llcm(AQ,P1Q). We see the multiplication by RQ as an endomorphism mRQ of
k[X,σ]Q/N . Since R follows the uniform distribution, so does mRQ. Remark that
mRQ(k[X,σ]P1Q/N) is a sub-ϕ-module of k[X,σ]/Q. It is actually equal to k[X,σ]AQ/N .
Indeed, k[X,σ]P1QRQ ⊂ k[X,σ]AQ, and AQ ∈ k[X,σ]P1QRQ/N by definition. Then,
we remark that the projection along k[X,σ]P2 onto k[X,σ]P1Q/N maps the sub-ϕ-module
UQk[X,σ]/N to llcm(U,P1)Qk[X,σ]/N . In particular, BQk[X,σ]/N is the projection of
mRQ(P1Qk[X,σ]/N) onto k[X,σ]P1Q/N . Therefore, B̃ is an irreducible right-factor of P2

unless mRQ(k[X,σ]P1Q/N) = k[X,σ]P1Q/N . Since mRQ is uniformly distributed in the
endomorphisms of DP and k[X,σ]P1Q/N has cardinal qde(e−1) while DP has cardinal qde2 ,
this happens with probability 1

qd(e−1) .

2.5 Other algorithms related to factorizations

In this section, we give some more details on other algorithms that could have interesting
applications. The theoretical material on which they rely is only what appears in previous
sections.
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2.5.1 Counting factorizations

This algorithm uses the formula given in corollary 1.4.21, and is recursive. First, we give
the algorithm computing the number of factorizations of a skew polynomial as a function
of its type:

Algorithm 7: CountFactorizationsStep
Input: (δ, (e1, . . . , en)) an integer and a nonincreasing sequence of integers
Output: The number of factorizations a skew polynomial whose norm is a power of

an irreducible of degree δ and that has dual type (a1, . . . , an)
1 h = 1;
2 for 1 ≤ i ≤ n do
3 if (i = n) or (ai > ai+1) then
4 j = min{l | al = ai};
5 h = h× CountFactorizationStep(δ, (a1, . . . , ai−1, ai − 1, ai+1, . . . , an))

6 × (qδl + · · ·+ qδi);

7 return h;

The following algorithm gives the number of factorizations of a given skew polynomial
as the product of its leading coefficient and monic irreducible skew polynomials. We assume
that we have a function DualType that computes the dual of a nondecreasing sequence of
integers.

Algorithm 8: CountFactorizations
Input: P ∈ k[X,σ]
Output: The number of factorizations of P as a product of its leading coefficient

and monic irreducible polynomials
1 N = N (P );
2 ([N1, d1], · · · , [Nt, dt]) = Factorization(N);
3 h = 1; τ = 0;
4 for 1 ≤ i ≤ t do
5 δ = deg(Ni);
6 A = rgcd(P,Ni); j = 1;
7 while A 6= 1 do
8 ej = degA

δ ;
9 P = P/A;

10 A = rgcd(P,Ni);
11 j = j + 1;

12 τ = τ + e1 + · · ·+ ej−1;
13 a = DualType(e1, . . . , ej−1);
14 h = 1

(e1+···+ej−1)! · CountFactorizationsStep(δ, a);

15 h = τ !× h;
16 return h;
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2.5.2 Random factorizations

For some applications of skew polynomials, it could be interesting to have an algorithm that
returns a factorization of a given skew polynomial P , following the uniform distribution on
all factorizations of this skew polynomial. In this section, we describe such an algorithm.

Since we do not want to simply list all factorizations of P and pick one randomly
(because there can be so many factorizations, so this would have a very bad complexity),
we want an algorithm that can simulate the uniform distribution on the right-factors of P .
Let us first explain how to do this when P has type (e).

Assume P has type (e) and norm N e, and let E = kσ[Xr]/(N). As usual, d = degN
and q = #kσ. Suppose that we know one irreducible right-factor P0 of P . This factor
correponds to a E-line in DP = k[X,σ]/k[X,σ]P . The orbit of this line under the action
of Endϕ(DP ) is the set of all E-lines in DP , corresponding to all irreducible right-divisors
of P . We now want to find one element u ∈ Endϕ(DP ) such that Endϕ(DP ) = E(u), so
that in order to simulate the uniform distribution on the irreducible right-divisors of P ,
it is enough to simulate the uniform distribution on the polynomials of degree < e with
coefficients in E and compute the image of our line under the action of M(u), where M
is the polynomial that we get. Let us estimate the probability to find such a u. Since
Endϕ(DP ) ' Me(E), we want to know the probability that, for a fixed nonzero vector
x ∈ Ee, an element u ∈ Me(E) admits an element of the line Ex as a cyclic vector. The
number of u ∈M(E) that have this property is (qd−1)(qde− qd) · · · (qde− qd(e−1)). Hence
the probability to find a u with the desired property is(

1− 1

qd

)2(
1− 1

q2d

)
· · ·
(

1− 1

qde

)
,

which is greater than 0.53
(

1− 1
qd

)
by [NP98], Lemma 2.2 (applied to computing the value

of the infinite product when qd = 4).
Once we know how to randomly get a divisor of a polynomial of type (e), the idea of

the algorithm to get a random factorization of any skew polynomial P is the following:
compute the type of P , and randomly choose an irreducible divisor Ni of N (P ) (with
uniform distribution). Compute Q = rgcd(Ni, P ) and randomly find a right-irreducible
divisor P1 of Q with the previous algorithm. Let Q1P1 = Q. Compute the type of Q1.
Keep the factor P1 with the same probability as the ratio of irreducible right-divisors of Q
yielding a left-divisor of the type of Q1 (this can be done counting the factorizations of Q
and Q1, which depends only on their types). Write P = RP1 and randomly factor R. By
construction, it is clear that the factorization we get in the end is uniformly distributed
among all factorizations of P .

2.6 Implementation

All algorithms presented in this article were implemented is sage. The source code is
available on the CETHop website at the URL:

http://cethop.math.cnrs.fr/documents/skew_polynomials-sage.tgz

A magma package is also available; it includes some of the algorithms presented here (and,
in particular, the factorization algorithm). It can be downloaded at the URL:

http://cethop.math.cnrs.fr/documents/skew_polynomials.m
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