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Product formula for p-adic epsilon factors

Tomoyuki Abe, Adriano Marmora

Abstract

Let X be a smooth proper curve over a finite field of characteristic p. We prove a product
formula for p-adic epsilon factors of arithmetic Z-modules on X. In particular we deduce the
analogous formula for overconvergent F-isocrystals, which was conjectured previously. The
p-adic product formula is the equivalent in rigid cohomology of the Deligne-Laumon formula
for epsilon factors in f-adic étale cohomology (for £ # p). One of the main tools in the proof
of this p-adic formula is a theorem of regular stationary phase for arithmetic Z-modules that
we prove by microlocal techniques.
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Introduction

Inspired by the Langlands program, Deligne suggested that the constant appearing in the func-
tional equation of the L-function of an /-adic sheaf, on a smooth proper curve over a finite
field of characteristic p # ¢, should factor as product of local contributions (later called epsilon
factors) at each closed point of the curve. He conjectured a product formula and showed some
particular cases of it, cf. [De2]. This formula was proven by Laumon in the outstanding paper
[La2].
The goal of this article is to prove a product formula for p-adic epsilon factors of arithmetic
Z-modules on a curve. This formula generalizes the conjecture formulated in for epsilon
factors of overconvergent F-isocrystals, and it is an analog in rigid cohomology of the Deligne-
Laumon formula.

Let us give some notation. In this introduction we simplify the exposition by assuming more
hypotheses than necessary, and we refer to the article for the general statements. Let k£ be a
finite field of characteristic p, and let ¢ = p/ be its cardinality. Let X be a smooth, proper and
geometrically connected curve over k.

We are interested in rigid cohomology [Be3] on X, which is a good p-adic theory in the sense
that it is a Weil cohomology. The coefficients for this theory are the overconvergent F-isocrystals:
they play the role of the smooth sheaves in f-adic cohomology, or vector bundles with (flat)
connection in complex analytic geometry. These coefficients are also known in the literature as p-
adic differential equations. As their f-adic and complex analogs, the overconvergent F-isocrystals
form a category which is not stable under push-forward in general. Berthelot [Be2], inspired by
algebraic analysis, proposed a framework to remedy this problem by introducing arithmetic F-
2-modules (shortly F-2-modules) and in particular the subcategory of holonomic modules, see
for a survey. Thanks to works of many people (e.g. [Ca2], [Cx3],...), we have a satisfactory
theory, at least in the curve case. We note that another approach to p-adic cohomologies has been
initiated by Mebkhout and Narvaez-Macarro [MN], and is giving interesting developments, for
example see [AM]. Although it would certainly be interesting to transpose our calculations into
this theory, we place ourselves exclusively in the context of Berthelot’s arithmetic Z-modules
throughout this paper. Nevertheless, we point out that Christol-Mebkhout’s results in the local
theory of p-adic differential equations are indispensable both explicitly and implicitly in this
article. The local theory of arithmetic Z-modules has been developed by Crew (cf. [Cr3], [Cr4])
and we will use it extensively in our work.

To state the p-adic product formula let us review the definitions of local and global epsilon
factors for holonomic Z-modules. The Poincaré duality was established for overconvergent F-
isocrystals in the works of Berthelot [Beb|, Crew and Kedlaya [Ke3|, and for the theory
of PT-modules by the first author [Ab3] based on the results of Virrion [Vi]. This gives a
functional equation for the L-function (Caro [Ca2], Etesse-LeStum [EL]) of .#Z, see .21 The
constant appearing in this functional equation is e(.#) := [[, ¢, det(—F; Hrf+%(—1))(_1)r+1,
where f: X — Spec(k) is the structural morphism, and it is called the global epsilon factor of
M .

The local epsilon factor of an arithmetic Z-module .#Z at a closed point x of X is defined
up to the choice of a meromorphic differential form w # 0 on X. To define it, we restrict .# to



the complete trait S, of X at x. To define the local factors e(.#|g,,w), we consider a localizing
triangle, cf. (B.O.0]); hence, by linearity, we are reduced to defining the epsilon factors for
punctual modules and for free differential modules on the Robba ring with Frobenius structure.
The former case is explicit; the latter was done in [Mr] via the Weil-Deligne representation
attached to free differential modules by the p-adic monodromy theorem.

The product formula (Theorem [L2.35)) states that for any holonomic F-2T-module .# on X,
we have

(PF) e(M) = gD ] e( s, ,w),

z€|X|

where g is the genus of X, r(.#) denotes the generic rank of .Z, | X| is the set of closed points
of X, and w # 0 is a meromorphic differential form on X. This formula can be seen as a
multiplicative generalization of Grothendieck-Ogg-Shafarevich formulas in rigid cohomology.

The proof of (PE) starts by following the track of Laumon: a geometric argument (see [La2l
proof of 3.3.2]) reduces to prove the fundamental case where X = P} and .# is an F-isocrystal
overconvergent along a closed set S of rational points of X (by refining the argument we can
even take S = {0,000}, cf. [Ka, p.121]). By saying that .# is an F-isocrystal, we mean that it
is an arithmetic Z-module corresponding to an F-isocrystal via the specialization map, see the
convention §0.0.71 In order to conclude, we need four components: (1) a canonical extension
functor 4 + .4 from the category of holonomic F-2f-modules on the formal disk to that
of holonomic F-2'-modules on the projective line, overconvergent at oo; (2) the proof of (PE)
for 2'-modules in the essential image of this functor; (3) the “principle” of stationary phase
(for modules whose p-adic slopes at infinity are less than 1); (4) an exact sequence in the style
“nearby-vanishing cycles” for certain kinds of 2f-modules.

The first component is provided by the work of Crew [Crd], extending the canonical extension
of Matsuda for overconvergent F-isocrystals. The second is technical but not difficult to achieve.
The third is the deepest among these four, and a large part of this paper is devoted to it. This
“principle” can roughly be described by saying that it provides a description of the behavior at
infinity of the Fourier-Huyghe transform of .Z, in terms of local contributions at closed points s
in A}C where . is singular (i.e. the characteristic cycle of .#Z does contain a vertical component
at s, cf. paragraph[[.3.8]). These “local contributions” are called local Fourier transforms (LFT)
of . , and one of the key points of our work is to provide a good construction of them. Here, we
differentiate from the work of Laumon, who used vanishing cycles to construct the local Fourier
transform of an f-adic sheaf.

A definition of local Fourier transform has been given by Crew 8.5] following the
classical path: take the canonical extension of a holonomic F-2f-module at 0, then apply the
Fourier-Huyghe transform, and finally restrict around co. However, we need more information
on the internal structure of LFT, and therefore, we redefine it. Our approach is based on
microlocalization inspired by the classical works of Malgrange and Sabbah [Sa]. Yet, there
are many more technical difficulties in our case because we need to deal with differential operators
of infinite order. We note that the definition is still not completely local in the sense that it
uses the canonical extension and the Frobenius is constructed by global methods. Once we have
established some fundamental properties of LFT, the proof of the regular stationary phase is
analogous to that of Sabbah [Sa] in the classical case (see also [Lo| for its generalizations).

The fourth component is proved using an exact sequence of Crew [Crd], Noot-Huyghe’s
results on Fourier transform, and the properties of cohomological operations proven in [Ab3].

The end of the proof of (PF)) is classical and it follows again Laumon, although there are still
some differences from the f-adic case that we have carefully pointed out in §7.5l In particular,
in loc. cit. we detail the proof of a determinant formula for the p-adic epsilon factor. This p-
adic formula gives a differential interpretation of the local epsilon factors and promises to have



new applications. Indeed, in §5.2] we give an explicit description of the Frobenius acting on the
Fourier-Huyghe transform. This might provide explicit information on the p-adic epsilon factors,
and moreover have arithmetic spin-offs. For example, in the case of a Kummer isocrystal, by
carrying out this calculation and applying the product formula we can re-prove the Gross-Koblitz
formula. This and related questions will be addressed in a future paper.

Concerning (-adic theory, we point out that Abbes and Saito [AS| have recently given an
interesting new local description of LFT as well as an alternative proof of Laumon’s determinant
formula for /-adic representations satisfying a certain ramification condition.

Finally, we mention that another application might come from Deligne’s hope for petits
camarades cristallins, cf. [De3l Conjecture (1.2.10-vi)].

After this introduction, this article is divided into seven sections. Here, we briefly describe
their content; more information can be found in the text at the beginning of each section and
subsection.

The aim of the first section is to define the characteristic cycles of holonomic Z-modules on
curves over the field £ (which is supposed here only of characteristic p > 0), and prove some
relations with the microlocalizations. For this, we prove a level stability theorem using microlocal
techniques of [Ab2]. The section starts with a short survey of microdifferential operators of loc.
cit.

The second section begins the study of local Fourier transforms for holonomic Z-modules.
This section is the technical core of the paper. We start in §2I] by a review of Crew’s the-
ory of arithmetic Z-modules on a formal disk; then we study in §2.2] the relations between
microlocalization and analytification of 2f-modules. This gives several applications: namely
the equality between Garnier’s and Christol-Mebkhout’s definitions of irregularity (§2.3]). We
finish the section by giving an alternative definition of local Fourier transform (except for the
Frobenius structure) in §241 We will see in §4] that this LFT coincides with that of Crew and
we will complete the definition in §5l by endowing it with the Frobenius structure.

The third section reviews the cohomological operations on arithmetic Z-modules. In partic-
ular, in §3.T] we recall the results of [Ab3] which are used in this paper, and in §3.2] we review
the global Fourier transform of Noot-Huyghe.

The fourth section is devoted to the regular stationary phase. In §4.1] we establish some
numerical results analogous to those of Laumon for perverse f-adic sheaves. In §4.2] we prove
the stationary phase for regular holonomic modules on the projective line.

It is in the fifth section that we finally implement the Frobenius in the theory. In §5.1] we
endow the local Fourier transform with the Frobenius induced by that of the global Fourier
transform via the stationary phase isomorphism. In section §5.2] we explicitly describe the
Frobenius on the naive Fourier transform.

The sixth section provides a key exact sequence for the proof of the product formula. This
sequence should be seen as an analog of the exact sequence of vanishing cycles appearing in
Laumon’s proof of the f-adic product formula. The section begins with a result on commutation
of the Frobenius in §6.1] and we then prove the exactness of the sequence in §6.21

Finally, in the last section, we state and prove the p-adic product formula. We begin in 7.1
with the definition of local factors of holonomic modules; then, in §7.2] we recall the definition
of the L-function attached to a holonomic module and define the global epsilon factor. We
state the product formula and we show that it is in fact equivalent to the product formula for
overconvergent F-isocrystals conjectured in [Mr]. The section continues with the proof of the
product formula: some preliminary particular cases in 7.4 and the general case, as well as the
determinant formula for local epsilon factors, in §7.51
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Conventions and Notation

0.0.1. Unless otherwise stated, the filtration of a filtered ring (resp. module) is assumed to be
increasing. Let (A, F; A);cz be a filtered ring or module. For i € Z, we will often denote F; A by
A;. Recall that the filtered ring A is said to be a noetherian filtered ring if its associated Rees
ring P, FiA is noetherian.

0.0.2. Let A be a topological ring, and let M be a finitely generated A-module. We consider
the product topology on A®™ for any positive integer n. Let ¢: A®™ — M be a surjection, and
we denote by .74 the quotient topology on M induced by ¢. Then .7, does not depend on the
choice of ¢ up to equivalence of topologies. We call this topology the A-module topology on M.

0.0.3. Let K be a field, and 0: K — K be an automorphism. A o-K-vector space is a K-
vector space V' equipped with a o-semi-linear endomorphism ¢: V' — V such that the induced
homomorphism K ®, x V — V is an isomorphism.

0.0.4. Let R be a complete discrete valuation ring of mixed characteristic (0, p), k be its residue
field, and K be its field of fractions. We denote a uniformizer of R by w. For any integer ¢ > 0,
we put R; := R/ R. The residue field k is not assumed to be perfect in general, we assume
k to be perfect from the middle of §2 and in the last section (§1l), we assume moreover k to be
finite. We denote by | - | the p-adic norm on R or K normalized as |p| = p~'.

In principle, we use Roman fonts (e.g. X) for schemes and script fonts (e.g. 2Z7) for formal
schemes. For a smooth formal scheme 2~ over Spf(R), we denote by X; the reduction 2" ®p R;
over Spec(R;). We denote Xy by X unless otherwise stated. In this paper, curve (resp. formal
curve) means dimension 1 smooth separated connected scheme (resp. formal scheme) of finite
type over its basis.

When X (resp. £) is an affine scheme (resp. formal scheme), we sometimes denote I'( X, Ox)
(resp. I'(Z7,04)) simply by Ox (resp. Oy ) if this is unlikely to cause any confusion.



0.0.5. Let 2" be a smooth formal scheme over Spf(R) of dimension d. A system of local
coordinates is a subset {x1,...,z4} of I'(2",04 ) such that the morphism 2~ — A‘}lz defined
by these functions is étale. Let s € 2" be a closed point. A system of local parameters at s is
a subset {y1,...,yq} of I'(Z",O4) such that its image in Ox ; forms a system of regular local
parameters in the sense of [EGA Oy, 17.1.6]. When d = 1, we say “a local coordinate” instead
of saying “a system of local coordinates”, and the same for “a local parameter”.

0.0.6. We freely use the language of arithmetic Z-modules. For details see [BeT], [Bed], [Be6l.
In particular, we use the notation @)&m), @Eg;n), @}K' An index Q means tensor with Q.

0.0.7. Let X be a scheme of finite type over k, and Z be a closed subscheme of X. We put
U := X\ Z. We denote by (F-)Isoc(U, X/K) the category of convergent (F-)isocrystal on U
over K overconvergent along Z. If X is proper, we say, for sake of brevity, overconvergent (F-
Jisocrystal on U over K, instead of convergent (F-)isocrystal on U over K overconvergent along
Z, and we denote the category by (F-)Isoc! (U/K).

Now, let 2 be a smooth formal scheme, and Z be a divisor of its special fiber. Let % :=
2\ Z, X and U be the special fibers of 2" and % respectively. In this paper, we denote
9;;@(*2) by 9;;7Q(Z) for short. In the same way, we denote Oy o(TZ) by Oy o(Z). Let
A be a coherent (F —)@}K@(Z )-module such that .#|4 is coherent as an Oy g-module. Then
we know that .# is a coherent Oy g(Z)-module by [BeL]. Let C be the full subcategory of

the category of coherent (F' ')@}K o(Z)-modules consisting of such .#. Then we know that the

specialization functor induces an equivalence between C and the category (F-)Isoc'(U, X/K)
by [Bedl, 4.4.12] and [Be6l 4.6.7]. We will say that .# is a convergent (F-)isocrystal on %
overconvergent along Z by abuse of language.

1. Stability theorem for characteristic cycles on curves

1.1. Review of microdifferential operators

We review the definitions and properties of the arithmetic microdifferential sheaves on curves,
which are going be used extensively in this paper. For the general definitions in higher dimen-
sional settings and more details, see [Ab2].

1.1.1. Let % be a formal curve over R. We denote its special fiber by X. Let T*X be
the cotangent bundle of X and n: T*X — X be the canonical projection. We put T*X =
T*X\s(X) where s: X — T*X denotes the zero section. Let m > 0 be an integer and .# be a
coherent @%’pﬁ?@-module. One of the basic ideas of microlocalization is to “localize” .# over T*X
to make possible a more detailed analysis on .#. For this, we define step by step the sheaves of
rings (f)%'"b), c;‘"\gl ), &M on the cotangent bundle.

%7(@
Let ¢ be a non-negative integer. Let us define é")((:n) first. For the detail of this construction,
see [Ab2) 2.2, Remark 2.14]. There are mainly two types of rings of sections of é")(gb) Let U

be an open subset of T*X. If U N s(X) is non empty, we get I'(U, @‘")((T)) =T(U Ns(X), 9)((7?)).
Suppose that the intersection is empty. Let U’ := 7~ (7(U)) N T*X. Then the ring of sections
of & )(gln) on U is equal to that on U’, and the ring of these sections is the “microlocalization” of

F(.@;T),F(U)). Let us describe locally the sections T'(U”, éa)((:n)) Shrink 2" so that it possesses
a local coordinate denoted by z. We denote the corresponding differential operator by 0. There



exists an integer N such that ONP™)m) is in the center of @ggb). Let S be the multiplicative
system generated by 9P )m) in 9)(?;). We define

LU, E60M) == (57 T(x(U"), 287) ",

where " denotes the completion with respect to the filtration by the order of differential opera-
tors. N N

Taking an inverse limit over ¢, we define éﬁ%ﬂ ). The sections of é‘;g;n ) can be described
concretely as follows. Let U be an open subset of T*X , and assume V := 7(U) to be affine.
Let 7 be the open formal subscheme sitting over V. Suppose moreover that 7" possesses a local
coordinate x, and we denote the corresponding differential operator by 0. For an integer k > 0,

take the minimal integer 7 such that & < ip™, and let [ := k —ip". By the construction of & (m),

o(m)

the operator AP m) in @Eg?) considered as a section of &, is invertible, and the inverse is
denoted by 8¢~?")tm) . Then we put 9 mm) .= g . =P )m) - We get

(U, @p(m {Z a0 m) ‘ak € (’)7/, hm ap = 0}
keZ

Finally, by tensoring with Q, we define & gn é One of the most important properties of & gn é is

that we get an equality for any coherent @gf?@-module A (cf. [Ab2l 2.13))
(m) _ o(m) -1
Char'™ (#4) = Supp(&y- ¢ ®7r*1@(&’3,)@ T M),

where Char(™ denotes the characteristic variety of level m (cf. [Be7, 5.2.5]). The module
é/a\ (m) ) 7L is called the (naive) microlocalization of .# of level m. The ring & f[é is

called the (nalve) microdifferential operators of level m.

1.1.2. In the last paragraph, we fixed the level m to construct the ring of microdifferential
operators. However, to deal with microlocalizations of QT Q-modules we need to change lev-
els and see the asymptotic behavior. The problem is that there are no reasonable transition
homomorphism éaf?’ (6 — éa glm ) for non-negative integers m’ > m. To remedy this, we need
to take an ‘/‘\intersection Let éa( ™ Unez(gié?))m where (é"t(% ))n denotes the sub-t~10 -
module of éﬁf’ ) consisting of microdifferential operators of order less than or equal to n, and
put éﬁgﬂ é = é"é;n ) ® Q. Then there exists a canonical homomorphism of 7T_1(9 2 @-algebras
(LN éi(;g — é"é;n()@ sending 8V to 9Vm) . We define éi(%mm ¢;1m ( )) N éa(m) By
definition, é/{g’ ™) s the p-adic completion of éaf?’ ’ml), and é/"\étn Qm) is & éf ) ® Q. When 2
possesses a local coordinate x, we may write

(1" X, é%@m”) =~ {Z apdF

kEZ

ay, EOg7Q,Zakak E(b@gn(@, ZCL 8k E(b@gn()@}
k<0 k>0

We note that the last condition ;- apoF € gé;n 6 is equivalent to >, a0 € -@92@ For
an integer k, we put (éﬁf’ Qm ))k = éﬁf’ @m) N (é"éﬁn 6);@ We have canonical homomorphisms

~

éag_l’m/) — é/ig?’m/) and é/{g”mlﬂ) — é/ig?’m/) (cf. [AD2l 4.6]). We call these sheaves the
intermediate rings of microdifferential operators.



1.1.3. Now, let us explain the relation between the supports of the microlocalizations of a
2(;2@-module with respect to intermediate rings and the characteristic variety. Let 2 be a

formal curve as in the last paragraph, and let .# be a coherent @gé—module. One might

expect that, for integers m” > m/ > m,
/\(m/’m//)

(1.1.3.1) Char™)(25") @ s, ) =Sup(ETG" © s ).

This does not hold in general as we can see by the counter-example [Ab2l 7.1]. However, the
statement holds for m’ large enough. The following is one of main results of [Ab2].

Theorem ([Ab2] 7.2]). — There exists an integer N such that (LI3I]) holds for m' > N.

1.2. Setup and preliminaries

1.2.1. In this paragraph, we introduce some situations and notation. In this paper, especially
in the first two sections, we often consider the following setting, which is called Situation (L).

Let 2 be an affine formal curve over R. Recall the convention [0.0.4] especially X;
and X. Suppose that there exists a local coordinate x in I'(2", Oy ) and fix it. We
denote the corresponding differential operator by 0.

If moreover we assume the following, we say we are in Situation (Ls).

Let s be a closed point in 2, and we fix it. We suppose that there exists a local
parameter at s denoted by ys; on 2.

We use the following notation.

Notation. — Let 2 be a formal curve over R, and % be an open affine formal subscheme of
2. We denote % ® R; by U; as usual. Let m’ > m be non-negative integers.
1. We put El, o = T(T*U, &) o), B = v(v, 6550, B = v(1+u, £57))
We P By g = L) B g ) Fug g )
m,m v S>(m,m/’ S(m,m/ © S>(m,m/ m,m’ © m,m’
E;, =T(T"U, 8y ), (Ey k= T(T"U, (&y Vk)s Ey. =T(T*U, éx, ).

2. Let E be one of E;/ Q’ ED B Ror a coherent @gz@—module A, we denote by

62/7@ ’ 62/7@ b3
E ®5m) A or E® 4 the E-module E'® U, ).

v, 950 T
3. Let x be a closed point in 2", Take a point &, in 7! (x) which is not in the zero section. Let

a pair (&, &”) be one of the four pairs (g";(m’m/), @ggn,m’))’ (gm(:&,m’)7 gg?@m’))j (5&%’”, cg"gg)),
(6"5@, 5}(@) For a coherent @F;ﬂ or @gé—module M we write EQ 5,y A for (£/®7r*1@(§?)
' )¢,. Note here that this does not depend on the choice of &, by the construction of
the ring &”. In particular, we denote é"g’s by &.

Moreover, assume that we are in Situation (L).

4. We denote by R g{a}mvm’) the subring of Eg}l’m,) whose elements are “horizontal with
respect to x”. More precisely, we define

Ry {oy(mm) .= {P = Z apd" € E‘{?”ml) POF = 9FP for any k > 0}.
neL

We put K 5-{0}"") .= Ry {0}™™) @ Q and Rx,{0}(™™) := Ry {9} () Jpitl,



Remark. — (i) Let & be a sheaf of rings on a topological space. Then an &-module .#
is said to be globally finitely presented if there exist integers a,b > 0 and an exact sequence

& — & — .4 — 0 on the topological space. By [Ab2, 5.3], when 2" is affine, there exists
»(m,m')

an equivalence of categories between the category of globally finitely presented é" -modules

(resp. (fdgw@ )—modules) on T*X and that of Ec(% ™)_modules (resp. EL(%Q )—modules) We

remind here that if there exists a coherent @Eg?)—module A such that # = & dg;n ') ® A, then

A is globally finitely presented, and the same for & };L (’@m/)-modules.

(ii) The ring Ry {0}™™) is generated topologically by {@<k>(m)7a<—l>(m/)}k’l20 over a finite
étale extension R(2") of R (cf. [L35] [30), which coincides with R if and only if 2" is ge-
ometrically connected. The rings K{9}™™) and Rx,{0}™™) are subrings of E%(gb) and
Eg?;’ml) respectively. We remind that they do depend on the choice of local coordinate x, and
in particular, we are not able to globalize the construction.

1.2.2. Let %2 be an affine formal curve over R. For integers k,l > 0, we define a sub-R-module
of E™™) 1,
a Y
U o= (BG™)_y + A B,

We endow E?’ml) with the topology denoted by .7, where the base of neighborhoods of zero is
given by the system {Uy, ;}r>0. With this topology, E(}nm )is a complete topological ring. Let
us see that it is complete with respect to this topology. Let { P;} be a Cauchy sequence in E%m ),

Then we may write P; = ); + R; such that: for any integers k& and [, there exists an integer N
such that @, — QN € (Ey (m " ))_k and R, — Ry € legl’m) for any n > N. By the definition

of the topology and the construction of the ring E%n’m/), the limits lim; oo @Q; and lim; .o R;
exist, and they are denoted by @ and R respectively. Then we see that lim; ., P, = @ + R by
definition. /
Now, let us define topologies .7 and .7, for any integer n > 0 on Eé?én ) Let n >0 be an
7 (m,m’)

integer. For integers k,l > 0, we can consider @™ "Uy; as a sub-R-module of £, 0 and we
denote by .7, the topology on - g lmom’) generated by the open basis {w ™" Uy} >0. This topology
makes it a locally convex topologlcal space, and moreover a Fréchet space by [Ti, Théoreme 3.12].
The identity map (E(}ng ), Tn) = (ngg ), In+1) is continuous by construction. By taking the
inductive limit (of locally convex spaces), we define a topology, denoted by .7, on E(}ng )1t
makes (EF;LS ), ) an LF-space in the sense of 3.1]. The separatedness can be seen from
the fact that the convex subset (Egﬁ’gl))_k + leL(g;n’m/) in Egﬁ’gl) is open in the 9,-topology
for any n and thus in the .7-topology.

Let M be a finitely generate Ec(% 0 ) _module. We denote the (E %ng ), I, )-module topology

on M (cf.[@02) by 7. Let us prove that the topology .7, is separated. Let ¢: (E%ngl))@a - M

be a surjective homomorphism, and put M’ := @((E\%n’m/))@a). Consider the quotient topology

on M’ using the topology .7, on E%’m,). It suffices to show that M’ is separated. Indeed,
take o, € M such that a # . There exists an integer i > n such that w'a, w'e/ € M.
If M’ is separated, there exists Uy, Uy p such that (@'a + o(Uy;)) N (@'a’ + o(Up ) = 0.
Since w ’Ukl D w "Uy,, we get the claim. Let us show that M’ is separated. Since E( m’)
is a noetherian complete p-adic ring (cf. [Ab2, 4.12]), M’ is also p-adically complete, and in
particular, p-adically separated. Thus, it suffices to show that M’ ® R; is separated for any i > 0
using the quotient topology 2 from M’. Consider the topology defined by the filtration by order



on Eg?j ™) The topology 2 coincides with the quotient topology via (Eg( ))@" — M' @ R;

induced by ¢. Since Eg(z ™) is a noetherian complete filtered ring by [Ab2, 4.8], we get that

M’ ® R; is separated, and thus the topology 7/ on M is separated.

This shows that, Ker(y) is a closed sub-(E (;16” ), Ip)-module. Thus the topological vector
space (M, 7)) is a Fréchet space. Of course, the identity map (M, 7)) — (M, 7,/ ;) is continu-
ous. We define the inductive limit topology (of locally convex spaces) .7’ on M, which is called
the natural topology on M. If the natural topology is separated, then (M, .7”) is an LF-space.
When it is separated, the open mapping theorem 3.4] implies that (M, .7”) coincides with

Flm,m’)
the (E 0 , 7 )-module topology.

In the same way, we define topologies . and .¥,, on K %{8}(’” ') and on finitely generated
K -{9}™™)_-modules when we are in Situation (L) of [LZI1

1.2.3 Lemma. — Suppose we are in Situation (L) of [L2ZIl Let M be a finitely generated
E(m’m/)—module We assume that it is also finite as K%{@}(mvm/)—module. Then the natural
topology as E( )—module and the natural topology as K gg{@} )-module are equivalent. In
particular, if moreover M is a free Kgf{(‘)} ™) _module, then the topologies are separated, and

M becomes an LF-space.

Proof. Let us see the equivalence. Let ¢: K g{@}(mvm/)@“ — M be a surjection. This surjec-
tion induces the surjection (E%&ll))@“ — M, and the quotient topology (M, 7)) is defined.
Let (M,.") be the Fréchet topology defined using the surjection ¢ and the (K 4-{0}"") )-
module structure, as done above in[[L2Z2for .7;/. Since (M, 7,!) is a topological (K o {0} 7 )-
module by the definition, the homomorphism ¢ defines a continuous surjective homomorphism
of topological modules (K 5 {8}(™™) #,)%¢ — (M, 7). By the open mapping theorem of
Fréchet spaces, we see that this homomorphism is strict, which implies that .7/ and . are
equivalent. The first claim follows by taking the inductive limit over n. When M is free as a
K 5-{0}™™)_-module, then it is obvious that it is separated. [ |

1.3. Relations between microlocalizations at different levels

In this subsection, we investigate the behavior of microlocalizations when we raise levels. In
general, this is very difficult. However, once we know that the supports of the microlocalizations
are stable (cf. [[3.8]), the behavior is very simple at least in the curve case.

1.3.1 Lemma. — Suppose we are in Situation (Ls) of L2ZIL Let m’ > m be non-negative
integers, and I be a left ideal of ngbm ); we put M = ngbm )/I. Let A be the éagnm ) _module
associated to M (cf. Remark L2 (i)) on T*X, and assume

Supp(.) = ' (s) N T*X.

Then for any integer k, there exists a positive integer N, R € Eg’m/) and S € (Eg%m/))k such
that
N _wR-Sel

Proof. Since Eg{n’m/) is a noetherian ring (cf. [Ab2l 4.12]), there exist n operators P; € Eg{n’m/)
for i =1,...,n such that I is generated by {P;}1<i<n. Let Z := 2 \ {s}, and U be its special

fiber. Then by the assumption on the support, there exists @Q; € Egﬂ ™) for each 1 < i < n,
such that

(1.3.1.1) > Qi-P=1

1<i<n
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For P ¢ Eé;n’m,), we denote by P the image of P in E[(]m’m/), and define w-ord(P) := ord(P).
We put p := max;{w-ord(F;),0}.

Since for any f € Oy, there exists an integer n such that 73" f € Ox where the overlines
denote the images in Oy or Ox, thus yo f € O g +wOy . This shows that there exists an integer
N such that for any i = 1,...,n, we can write

yNQi=Q,+wR;i + S;,

where Q) € E%n’m/),Ri € Egn’m,), and S; € (E é;nm))k_u. Then by (311, there exist
R € Eg(;’ml) and S’ € (Ea(;ml))k such that

=3 Q- PtwR +5.
Let us show that for any integer &’
(1.3.1.2) (@ES™™) + (BES™))) 0 EGom) = B 4 (B4,

It is evident that the right hand side is included in the left one, let us prove the opposite
inclusion. Take elements P € wﬁgn’m,) and ) € (Eﬁ;’ml))kr such that P+ Q € E?’m/). Write
P =3 cza,0" with a, € Oy g, and put Pspr:= > 1 a,0" and Pepr := > 1 a,0". Then
we get Py € Ec(g?) (and in particular, contained in wﬁg)) and P<jy + Q € (E?’ml))k/ by
assumption, which implies the equality (L31.2]).

Since yN —>" Q! - P; € Eg;n’m,), we get, by using (L3.I1.2]), that

wR + 5 € wEY™) 4+ (BS™)),.
Thus the lemma follows. |

1.3.2 Lemma. — Suppose we are in Situation (Ls) of L2l Let m’ > m be non-negative
integers, and .# be a globally finitely presented éagn Qm ) -module such that

Supp(#)NT*X = 771 (s).

We denote F(f*X, M) by M. Then we have the following.

(i) The module M is finite over K4-{0}™™) . Moreover, if it is monogenerated as an
E%gl)—module, there exists a p-torsion free E%n’m/)—module M', such that M' @ Q = M, and
M’ is finitely generated over Ry-{0}™™).

(ii) There exists a finite set of elements in M such that for any open affine neighborhood W
of s in X, F(T*VV, M) is generated by these elements over K- {0}™™) . If M is generated by
a € M, then there exists an integer N > 0 such that we can take this set to be {(:E’yg) a}0<i’j<N.

Proof. Let 4 be a coherent sub- éa( ™) _module of .#. Let A4 be either .4 or A | AN . Then
by the additivity of supports we know that

Supp(A)NT*X = 7""(s) or 0.

If it is (), then .A”'| ., , = 0, and in particular, 4" is finite over K 5-{9}(™ ') By induction on the
number of generators of M, we reduce the verification of both (i) and (ii) to the monogenerated
case.

From now on, we assume that M is a monogenerated module. Fix a generator o € M. Let
M’ be the Sub—Eg;n’m,)-module of M generated by «. Let I be the kernel of the homomorphism

11



E'(m’m/) — M’ of left E(m’m,)—modules sending 1 to a. We note that, by definition, M’ @ Q =
M. Since M’ is p-torsion free, we get that Supp(@‘"(mm) ®@ M) = Supp(@‘"(mm) ® M') where

é"gﬂ Qm) ® M denotes the é"gﬂ Qm ) _module associated to M (which is equal to . by [[.2.0]), and

the same for @ggn,m’) ® M'. Thus by Lemma [[3.1] for k = —1, there exists a positive integer N’
and T € wﬁg’m/) + (Eg’m/))_l such that y; IAE T {nod I

To conclude, it suffices to show that M" := Egﬂn )/(yivl —T) is generated over Ry-{0}™™)
by & := {2 yg}oq o Where N = N’ +deg(s) since there is a surjection M” — M’. Since M"
and R4 {9}™™) are w-adically complete and p-torsion free, the conditions of I11.2.11, Prop
14] are fulfilled, and thus, it suffices to see that M" /w is generated by & over R %{8}(’”””/)/ w.

We are reduced to showing that E&m’m/)/ (7N —1T) is generated over Rx{0}™™) by &, where
T € (E&m’m/))_l. Since E&m’m/)/(y’sN’ —T) and Rx{0}™™) are complete with respect to
the filtrations by order, it is enough to prove the claim after taking gr by I11.2.9, Prop
12]. Since the order of T is less than 0, this amounts to prove that the commutative algebra

gr(Eg(m’ml)) /(7sN") is generated over Ry,{0}™™) by &. This is a straightforward verification
which is left to the reader. [

1.3.3 Lemma. — We assume that we are in Situation (L).
(i) Let m’ > m. Then we have a canonical isomorphism

E(/m—i—l,m) ~ K {8} (m+1,m’) 3 m’)

S(m
7,0 Dk ooy By g

of bz’—(Kgy{(‘)}(mH’m’), E?gl))—modules. Here the complete tensor product is taken with respect
to the p-adic topology.
(i1) Let m' > m. Then we have a canonical isomorphism

n ) ! ~ ! Af n ’ '+1
EG™™) = Ry {o}mm )®R%{a}<m»m’+1>E$m :

of bi-(Ry-{0}m™) E gfnm Jrl))-moalules. Here the complete tensor product &' is taken with
respect to the ﬁltmtzon by order.
(iii) Let m' > m. For any i > 0, we have a canonical isomorphism

m,m’) ~ m.m/ m,m’+1
Eg(l ):RXi{a}( ™ ; {a}(mm+1)E( )

of bz'—(RXi{(‘)}(m’m/), E&T’mlﬂ))—modules. Here the complete tensor product is taken with respect
to the filtration by order.

Proof. Let us see (i). There exists a canonical homomorphism
o BGeY) = Koy {0} ™G o B

sending P to 1® P. For short, we denote I'(:2", 5};”“’"”) by E, which is considered to be a sub-

ring of ngn(g,) using the canonical inclusion. We know that E RQ = E‘gél’m/) where " denotes
the p-adic completion The image @(F) is contained in the image of
Ry {0} (m+1m) o {0}, m/)E( ™) Indeed, let P € E. We denote Nz, 2(%7”“)) by DL(;H).

Then we may write P = P>¢ + P~y where P> € D?Jrl) and P.g € E_1 C E%n’m/). For
Py € D(m+1) we can write P>0 =>, >0 O m+1) q; where a; € O 4. Since this is a finite sum,
1 ® P5 is the image of > ;50 Dm+1) @ a;, and the claim follows.
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This implies that the homomorphism ¢ induces the canonical homomorphism
. A(m+,
B E(g?:(@ m') _)Kx{a} (m+1,m )®K%{8}(7”m,)E(Q/Q )
On the other hand, we have the canonical homomorphism
K o (m+1,m E( m’) E(m+1 m’)
b Ko {0} ®K ymmn By Tyl

To conclude the proof, it suffices to see that 1Z op =1id, po 12 = id. Since ¢ and ¢ are
continuous, to see the former equality, it suffices to show the identity on E, which is obvious.

Let A = Kg{a}(m+1’m’) NE C E%H’m/). To see the latter equality, it suffices to see after
restricting to Im(A4 ®z E(}nm) — K%{a}(m—"—l’m/)@E%g )). Since this is straightforward, we
leave the argument to the reader.

Now let us prove (ii). We have a canonical homomorphism

m,m/) S(mom/ 41 S(m,m/
On the other hand, we also have the homomorphism

sending P to 1 ® P Since 1Z o ¢ is the canonical inclusion, we get that ¢ is injective. We put
B := Ry {o}mm ®R {oyimm’ H)E(mm D Tetn < 0, and take S := ), P, ® Q; in B,. Then
there exists f € Oy such that

S P©Q =000 @ fmod By .

Suppose S ¢ Bj,—1. Then f # 0. There exists an integer N such that pN8<"><’"’> € Rgf{(‘)} (mm/+1)

Thus for N' > N, we get pV'S = 1 ® (pN'0™e)) . fmod B,_y. If 1@ (pV' oM™y . f e

Bn 1, we would get ¥ o o((pN' O™ ). ) € (Eé?m ))n_l, which is impossible. Thus, we get
® (pN' o' (’"’)) f & Bn_1. This shows that p¥'S & B,_; for any large enough N’. Thus,

1
gr(Rx{a} ™)@y om0 Gy )
morphism

is p-torsion free. In particular, the canonical homo-

i: Ry {0}"m™% 2 (o (mm i Y (Rgz{a}“”’m’)®fz%{a}<m,m,ﬂ>é?é?”’m ) eQ

is injective.
Now, let Eg’m] = p;@lm,(Effgn’m)) where pp, E%(S LR Eggn(gb) is the canonical
inclusion (cf. [Ab2, 5.5]). There exists the following diagram.

m,m’ m,m’+1
(R%{a}( UL JI; {8}(mm+1)E( +))®@

R A0} )&, o s B

[m,m’]

Let us construct the dotted arrow making the diagram commutative. It suffices to see that
Im(j) C Im(i). Let P =Y, _, 0%a; € E%’m} where a;, € Og . Since there exists an integer
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N such that j(p" - P) € Tm(3), it suffices to show that j(9*az) € Im(i) for any integer k, which
is easy. Thus j induces the canonical homomorphism

E;n,m} - R%{a}(m’m,) 2 {9} (m.m’ +1)E(m )

of filtered rings since 7 is injective. By taking the completion with respect to the filtration by
order, we get the canonical homomorphism

~ (mm’ m.m o f m,m’/+1
(70: EFQ,/' ) — R%{a}( ’ ) R {a}(mm +1)E( + )

We see easily that @ o v =id, ¢o » = id as in the proof of (i), which concludes the proof.

Let us see (iii). The above argument shows that B/B,, is p-torsion free for any n € Z. Since
B/B,, is p-torsion free and the inverse system {B/B,}, satisfies the Mittag-Leffler condition,
we get (L&ln B/B,) ® R; = @n(B/Bn ® R;) for any i. Let B be the completion with respect
to the filtration by order. We get

B®R; y_B/B ) ® R; = y_B/B ® R;)

~1; ~ m,m’ m,m’+1
= tim((B © Ry)/Im(By)) = R 0} ™™ &, o B,

By using (ii), the claim follows. [

1.3.4 Lemma. — Let 2" be a smooth formal curve over R, and w: T*X — X as usual. Then
the algebra é"étn(@m) 1s flat over ﬁ_l.@g;n?@.

Proof. By [Ab2, Corollary 2.9] and [Bed], 3.5.3], we know that gg’g is flat over ﬂ_lég?Q. It
—15(m) o
Z,Q (g((%f (7@ )7 .)

)

suffices to show that Tor, = 0. This amounts to prove

,1jgl)

Tor, 2 %Q/@‘"(mm), ) =0

by the flatness of @gg]z (3 However, by [Ab2, 5.11 and 7.8], this is equivalent to showing that

71j( ~ / ~
Tory, (x93} D5, 8) =0,
which follows from the flatness of @é}n% over .@fygb?@ |
Remark. — We do not know if @g gfn @m,) is flat over ‘@};?@ when the dimension of 2" is greater

than 1 and m’ > m.

1.3.5. Let 2 be a connected smooth formal scheme over R. Let n be the generic point of 2,
and denote by R(Z") the integral closure of R in the field O 4 ,. The ring R(Z") is a discrete
valuation ring as well since it is finite over R and connected. Thus by [EGAL IV, 17.7.7], R(Z")
is étale over R. Moreover R(.Z")/w is the separable closure of k in Ox ,, and 2" is geometrically
connected over R(2") by [EGA| II, 4.5.15]. Put K(2") := R(Z) ® Q. This is an unramified
field extension of K. The field K(2") is called the field of local constants of 2". The reason for
this naming comes from the next lemma.
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Lemma. — Suppose 2 is affine and possesses a system of local coordinates {x1,...,xq}. We
denote the corresponding differential operators by {01,...,04}. Then we get

K(Z)={f€0xq|0i(f)=0 for1<i<d}.

Proof. For this, we may assume that R = R(Z"). There exists a finite étale extension R’ of R
such that R’ is a discrete valuation ring and 2" := 2" ®g R’ has a R'-rational point. Note that
2" is also connected and K(2”) = R’ ® Q. By Galois descent, it suffices to show the lemma
for 2. In this case the lemma follows from [EGA] IV, 17.5.3]. |

1.3.6. Let L be a finite field extension of K. Let I be a connected interval in R>. We denote
by A, 1,(I) the ring of analytic functions {ZieZ a;x' | o € L,lim; 400 |as|p? = 0 for any p € I}.
For short, we often denote this by A(I). For real numbers 0 < a < b < oo, we put

Ay 1({a,b]) == {Z a;x

1€EZL

a; € L, sup{|aila’} < oo, lim |oy|b" = 0}.
€7 1— =400

Similarly, we define A, 1([a,b}). Let wy, := p~/P"P=D < 1 and w := wy. Note that if m’ > m,
we get w < w/wpy < w/wy, < 1. Then by the definition of K{8}™™) we get the following
explicit description.

Lemma. — Suppose we are in Situation (L) of L2l Let L be the field of constant of Z .
Then for any non-negative integers m’ > m, we have an isomorphism

Kﬁ?f{a}(m’ml) = Az, L({w/wms, w/wp])
sending O to x.

1.3.7 Lemma. — Suppose we are in Situation (L). For any non-negative integers m' > m,
the commutative ring Kg{@}(m’m/) is a principal ideal domain. Moreover, K {0} is a field.

Proof. Let us show that K 4 {9} is a PID. We use the notation of paragraph Let L
be the field of constants of 2. It suffices to show that Az ({a,b]) is a principal ideal domain for
any 0 < a <b < oo. Let f € A({a,b]). Since L is a discrete valuation ring, there are only finitely
many critical points of the function |log(a),log(b)] — R; p = log(| f(2)|exp(p))- Thus, there exists
a polynomial p € L[z] and g € A(]a,b])* such that f = pg (cf. [Dwl A.4]). Since there are no
zero points of g on ]a,b], there are no critical points of the function ]log(a),log(b)] — R;p —
108(]9(2)|exp(p)), which shows that g € A({a,b]). In the same way, we get that g~' € A({a,b]),
and thus, g € A({a,b])*. This shows that any ideal is generated by polynomials. Since L|[x] is
a principal ideal domain, the ideal of L[x] generated by the polynomials is also principal, and
thus K 5-{0}(™™) is a PID.

To see the latter claim, it suffices to show that A({a,a]) is a field for any a > 0. The
verification is left to the reader. |

By this lemma, we get that any finitely generated K (y{a}(m’m/)—module with a connection
is a free K4 {0} )-module by [Chl Corollaire 4.3].

1.3.8. Let Z be a formal curve, and .# be a coherent @g?@—module. We say that # is

holonomic if the dimension of Char™ (.#) is 1. For an integer m/ > m, let .4 (™) := @g%@)/fl
We say .# is stable if for any m” > m/ > m, we have

g(m/ m//

Supp(€y- g )®F@g”@ L) = Char™ (.27).
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In particular, we have Char™)(.# (™)) = Char™ (.#). By Theorem [.I.3} any coherent @}?2@—
module is stable after raising the level sufficiently. We say that a point = € X is a singular point
of A if 71(s) C Char™ (). From now on, to avoid too heavy notation, we sometimes denote

Char(™ by just Char. For a coherent @}K g module .7, there exists a stable coherent @gz@—

module .#' for some m such that 9} @ M= H. We define Char(.#) := Char™ (.#"), and
we say that .# is holonomic if .#" is. We define the set of singularities of .# as that of .Z".
Note that when .# is a coherent F- .@g@—module (cf. B, the definition of holonomicity is
equivalent to that of Berthelot as written in [Ab2, 7.5]. For the later use, we remind here the
following lemma.

1.3.9 Lemma. — Suppose we are in Situation (L) of [L2ZIl Let .# be a monogenerated stable

@gfg@—module, and o € T(Z', M) be a generator. Let S be the set of singular points of M .
Assume
Char(.#) = X U | Ty X.
ses
Take s € S, and let ys be a local parameter of Oy . Then for any integers m” > m/ > m, there

exists an integer N such that {z'y] ato<ij<N generate (éﬁgj’@m”) ® Mg over Ko {0} M)

Proof. We may shrink 2" so that we are in Situation (Ls) and S = {s}. Then this is just a
direct consequence of Lemma [[.32] (ii). [

1.3.10. In this paragraph, we will consider Situation (L) of [L2] Let .# be a stable holonomic
@gfg@—module and s be a closed point of 2" such that Char(.#) D 7~!(s). The éas(’g’m ) -module

@gs(g,m’) @ 5(m) ~# can be seen as a K x{@}(m’m/)—module When we are especially interested in

this K4-{0}™™)-module structure, we denote this module by &, (m " )(/// ). We caution here
that this definition is only for this section, and in Definition 2.4 - we use the same notation

for slightly different object. In the same way, for a @Eg?)—module M, we put éz(m’m/)(% " =
éz(m’m/) ®5(m) A" and the same for Qg(m)-modules etc.
By the condition on the characteristic variety, we get that c;“’;(g’m/)(/// ) is finitely gener-

ated over K 5-{0}'™™) by Lemma Let L be the field of constants of Z". We have the
isomorphism of Lemma

Ag’?,Lmr) = Ax’,L({W/Wm’,W/wm]) = K%{a}(m,m’)

sending 2’ to 9. We consider (;i(g,m’)(/// ) as a finitely generated Ag}l’Lml)—module using this

isomorphism, and equip it with the following connection. For a € g";(g’ml)(% ), we put
V(a) = (—za) ® dz'.

We may check easily that this defines a connection. Using this connection, we consider é?s(g’m,) (A)

m’)

as an A(, 1 -module with connection. This implies, as a result, that & (m " )(/// ) is a finite free

AEZ,'?Lm )-module by L3771 We denote its rank by rk(é"(m o )(///))

1.3.11 Proposition. — Suppose we are in Situation (L) of[LZI]. Let .# be a stable holonomic

égé—module. Let S be the set of singular points of A .
(1) For an integer m' > m and s € S, we get an isomorphism

>(m+1,m’ S>(m,m’ ~ m41.m’ »(m,m’
gs(’QJr )®6”A(75’m,) gs(@ )(//) ~ Kf{{a}( +1, )®K%{8}(m’m,)gs(@ )(%)

s
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m,m Z(m~+1,m’
In particular, ﬂ{(é"(Q )(///)) = rk(éﬁ(@Jr )(///))
(i) For m" > m and s € S, we get an isomorphism

S(m,m/ S(m,m/+1 ~ m.m/ m,m’+1
&% >®g(m,m,+1) EL™ I () = K {0 ™) @ oy g™ T ().

S

In particular, rk(é"(m . +1)(///)) = rk(g;(vg’m )(///))

Proof. Let us see (i). Let % be an open affine neighborhood of s such that SN % = {s}. We

put M’ = F(T*U éa(m m’) ® A ), where U denotes the special fiber of % . Since tensor products
commute with dlrect hmlts it suffices to show that

~S(m—+1, ~ ’
Eé;rj(@ m') ®E$$’> M =~ K%{a}(m-l-l,m )®K%{a}(m,m’)M/.

By Lemma [[33] (i), we get

(m41,m’) I~ (m+1m) /
Egm ’ ®"‘mm/ M ® m,m M
% Q ES ) Eu By

~

= (Ky{oytmttm )®K {8y0m, m’)Eé/ Q ))® (momiy M
Ea

a—t K(Qf{a}(m'i_lvm )®K%{6}(m'm/)M,

= Kﬁf{a}(mﬂ’ml)@K%{a}(m’m’)M/-

The last isomorphism follows from the fact that %(7g’m,)(% ) is finite over K 2-{8}(™™). Since

moreover éz(’g’m,) (M) is free over K 5 {8}™™) the claim for the rank follows from the preceding
isomorphism.

Let us prove (ii). Since we know that é"(Q ™) is flat over é"(mm 1) by [Ab2, 5.13], we may
suppose that .# is a monogenerated module using an extensmn argument Let % be an open
affine neighborhood of s such that SN % = {s}, and U be its special fiber. As in the proof
of (i), it suffices to show the claim over 7. By using Lemma [[.3:2] there exists a p-torsion

free Eg,;n’murl)—module M’ such that D(T*%, gg@mlﬂ) @A) = M ® Q and which is finitely
generated as an R{9}(™™ *1)_module. Now, we get

(1.3.11.1) B & pnman M (n_ m B @ ® g+ M!

~ T m,m’) /
LE E(m m/ +1)Mi'

Indeed, the first isomorphism holds since Egn ) ® M’ is p-adically complete. To see the second

isomorphism, take a good filtration on M/. The tensor filtration is good by [LOL Ch.I, Lemma
6.15]. Thus E(m’m) ®E(mm +1y M/ is complete by [LOL Ch.II, Theorem 10] since E( ™) s a

noetherian filtered complete ring by [Ab2, Proposition 4.8]. Now by Lemma [[.3.3] (111), we get
(mm') = f ~ m) oS
By ®E[(]'_”'7”/+1)Mi, = Ry, {0} )®in{3}(m,m’+1)Mi

by the same calculation as in the proof of (i). (For careful readers, we note here that the same
statement of 2.1.7/6,7] holds for filtered rings by exactly the same arguments. The detail
is left to the reader.) Thus by the same calculation as (ﬂ:ﬂ:l:l]), we get

Eg];n m’) ®E(m m/ 1) M R {8} ®R5g{a}(m m/+1) M

By tensoring with Q, we get what we wanted. |
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1.4. Characteristic cycles and microlocalizations

We will see how we can compute the multiplicities of holonomic modules from its microlocaliza-
tions. In general, it is very difficult to calculate the characteristic cycles in terms of intermediate
microlocalizations. However, the construction of the rings of naive microdifferential operators
are simple and formal, therefore we can calculate the multiplicities easier.

1.4.1. For a graded ring A and a finite graded A-module M, the graded length of M is
the length of M in the category of graded A-modules, and we denote it by g.lg4(M). When
glg4(M) =1, we say that M is gr-simple. We say that A is gr-Artinian if g.lg 4 (A4) < oc.

Let A be a positively graded commutative ring, and M be a finite graded A-module. Let
p € Proj(A), and

Sp:={1}U{f € A\ Ag| f is a homogeneous element which is not contained in p}.

We denote by A the localization Sy LA, and Sy M by M;. We note that since Sy, consists of
homogeneous elements, these are respectively a graded ring and a graded module. Let X :=
Spec(Ap), V := Spec(A), P := Proj(A). The schemes V and P are schemes over X, and there
exists a canonical section s: X — V. We put V := V \ s(X). Let us denote by ¢: V — P the
canonical surjection defined in [EGAL 11, 8.3]. Now we get the following.

Lemma. — Let M(*) =P,z ﬁ(n) be a quasi-coherent Op-module. Let p be a generic point
of Supp(M (%)) C P. Then we get

glga (My) = lg4, (My).

Proof. By [EGAL 11, 8.3.6], we get that the fiber of ¢ at p is f: Spec(Ay) — Spec(A(,)). Since
[e((Mg)™) = M(*), the support of the sheaf (M)~ in Spec(Ag) is contained in V(p), and there
exists an integer n such that p"M; = 0. Thus Mj is a graded Ag/p”—module. Let N be a
graded Ag/p"-module such that N # 0. Then N, # 0 by the definition of Az. This shows
that given a chain 0 C Ny C --- C N; = M; of graded sub-Ag-modules, we can attach a chain
0C (N1)p € -+ € (N))p = M, of sub-Ay-modules. Thus we see that g.lgAH(Mg) < lg g, (My).
To see the opposite inequality, it suffices to show that given a Ag/p”—module N such that
g.lgAE(N) =1 then lg4, (Ny) = 1. Since Ag/p is the only gr-simple A;/p"-module, it suffices to
show that Ig(Ay ®.; (A5/p)) = 1, which is obvious. |

1.4.2. Let A be a noetherian filtered ring, and M be a finite A-module. Let F be a good
filtration on M. Then consider g.lgg (4)(gr(M)). Exactly as in the classical way (e.g.
A.II1.3.23]), we are able to show that this does not depend on the choice of good filtrations.
Recall that we say an increasingly filtered ring (A, F});cz is Zariskian if it is noetherian filtered
and F_1 A is contained in the Jacobson radical J(FyA) of FyA.

Lemma. — Let A be a Zariskian filtered ring such that gr(A) is a gr-Artinian ring. Suppose
moreover that

Ig4(A) = glgg(a)(gr(4)).
Then for any good filtered A-module (M, M;), we get

lga(M) = g.lgg,(a)(gr(M)).
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Proof. First, let (M, M;) be a good filtered A-module and take a sequence of sub-A-modules
M2O>MD ..o MY =0

We equip M*) with the induced filtration. These filtrations are good by [LOL Ch.II, 2.1.2] since
A is a Zariskian filtered ring. Since the filtration on M®) /M (*+1) is good and A is a Zariskian
filtered ring, the filtration is separated, and gr(M®) /M*E+D) =£ 0. Thus we get the strictly
decreasing sequence

gr(M) 2 gr(MD) 2 - 2 gr (M) = 0.

This shows that 1g (M) < g.lgg,(4)(gr(M)). It suffices to show that if (IV, N;) is a good filtered
A-module such that N is a simple A-module, then gr(N) is a gr-simple gr(A)-module.
Let
A=T10O>5710 5. ..

be a composition series. The hypothesis and the above observation imply that

gr(4) 2 gr(1") 2 2 gx(1V) =0
is also a composition series in the category of graded modules. Since any simple graded A-
module is appearing in the series, we get that for any simple A-module NV, there exists a good
filtration on N such that the gr(A)-module gr(N) is gr-simple. Indeed, there exists 0 < k < I
such that N = 1®) /1k+1) " We put the good filtration induced by that of I*)/1++1) on N,
Then since gr(I*) /1*:+1) is a gr-simple gr(A4)-module, we get the claim. Since for any good
filtrations F' and G on N, we know that grp(N) and gro (V) have the same gr-length, we get
that gr(NN) is gr-simple for any good filtration. This concludes the proof of the lemma. |

1.4.3. Let us consider Situation (L) of [L2]1 Recall the notation of Let .# be a
holonomic @%n()@—module (not necessarily stable). Let Cycl(.#) = Y cqms - [t (s)] + 7 - [X]
be the characteristic cycle (cf. [Abll, 2.1.17]). The integer my is called the vertical multiplicity
of A at s.

Proposition. — We get

P ki ayom (64 () = degy (s) - s,
where L := K(2) and deg; (s) := deg(s) - [L : K]~'.

Proof. By an extension argument, we may assume that .# is a monogenerated module. Let .’
be a monogenerated @g)—module without p-torsion such that .#’ ® Q = .#. Since & gn ) is flat
over @Eg?) by [Ab2l, 2.8-(ii)], we note that &m (L") is also p-torsion free. Let L{AP")m}(0) pe
the subring of K %{8}(’”) topologically generated by 9*7™)m over L. Then we get

~

Ptk oy (Bhg () = TR o (L) ().

We know that &™ (") is finite over Ry {0} by Lemma[[32 and in particular, finite over
Rp{o®")em}O) .= £{o®P™")m 10 N Ry-{0}™) . Since Ry {8} is a discrete valuation

~

ring whose uniformizer is @, and &m (") is p-torsion free, we get that &m (') is free over
R {o®")em} O Thus, we get

ESD (M) = 1k (EM™ (")

Ky o™ yo (s, R (07" y©
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= deg(L/K)™" -1k (M [)).

Here k[8P")m][0%")m)] is considered as a subring of Rp{0%")m}0) /. Now, we put A :=
M'|w. Take a good filtration F, of 4. Let & be the generic point of the fiber 771(s).

Then (grf' (A))e, is an Artinian (Opgm« y )e,-module. Note that &m () possesses a natural
filtration induced by the good filtration (cf. [Ab2, 1.7] or [Lall A.3.2.4]). Thus, we get

ms =g e, (a7 (A )e,) = g-lggr@{mg‘)(gr(@(m) (1))

T(m)* x

by using Lemma[[ZI} Since the injection Ox ,[¢FP™m] gr(éa)({nZ) induces the isomorphism

Ox ([¢FPMm] 5 (gr(é")((?s))red where £FP™)em) denotes the class of 9P in gr(é")((?s), we
get

g'lggr(c)‘”}((?s)(gr(gs(m) (’/V))) = g‘lgox’s[a&pm)(m)] (gr(éas(m) (‘/V)))

= (deg(s)) ™" - g18; pytrm oy (2(EL ().

By using Lemma [[.Z.2] we get the proposition. [

1.5. Stability theorem

We summarize what we have got, and get the following characteristic cycle version of Theorem
[LT3L which is one of main theorems of this paper. Recall the notation of paragraph [L3.10]

1.5.1 Theorem (Stability theorem for curves). — Let 2" be an affine formal curve over R in

Situation (L) of [L21], and .# be a stable holonomic .@( m) g-module. Let S be the set of singular
points of A, and suppose that //l]gf\s 18 a convergent zsocrystal Let r be the generic rank of
M.

(i) For any m” >m/ > m, we get

~ !

ke, gy (B0 () =t o (B ™ (M) =ty oy (EL ) (A0)).

This number is denoted by 7.
(i1) For any m’' > m, we get

m’)  5(m') _ -1
Cyell )(@%7(@ ®@$i@ M) =1 X]+ (deg(s ze;gp Ts - (s)],
where L := K(2) and deg; (s) := deg(s) - [L : K]~}

Proof. Since .# is stable, we get for any m” > m/ > m,

(8 () = kBl () = k(B ()

87@

by Proposition [L3I1]l Thus (i) follows.
Let us see (ii). For this, the vertical multiplicities are the only problem. By Proposition
[L43, we get for any m’ > m

P xkge oy (B8 () = degp(s) - m (™).

Thus combining with (i), we get (ii). |
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1.5.2 Definition. — Let 2" be a formal curve, and let .# be a holonomic 9} Q—module. Let

M is a stable coherent @fy?()@—module such that 9:% 0® M= M. Let S be the set of singular
points of .#Z. We define

Cycl(A) = r- [X] + (degp(s)) ™" > rs- [ (s)],

ses

where 7 is the generic rank of .Z, and r; := rk(é(’g) (A’ )) € N, which does not depend on the
choice of .#' by Theorem [[L5.11

Remark. — (i) When .# possesses a Frobenius structure, the characteristic cycle here coin-
cides with that of Berthelot [BeT, 5.4.2] (or [AbIl 2.3.13]).

(ii) Even if we consider 2~ as a smooth formal scheme over Spf(R(.Z")), the characteristic
cycle Cycl(.#) does not change. This implies that (deg;(s))~' -7, € N, and the characteristic
cycle has integral coefficients.

1.5.3 Corollary. — Let Z be a formal curve over R. The category of holonomic QT% 0"
modules is both noetherian and artinian.

Proof. This follows from the additivity of Cycl, and the fact that r, € N using the notation of
the definition above. |

2. Local Fourier transform

The aim of this section is to define the local Fourier transform. We note that the definition itself
is not difficult anymore thanks to works of Huyghe and Matsuda; we can take the canonical
extension, the geometric Fourier transform, and take the differential module around oo as pre-
sented in [Crdl 8.5]. However, with this definition, we are not able to prove the stationary phase
formula in the way we used in the complex case. In this section, we instead define the local
Fourier transform using microlocalizations following the classical techniques, and prove some
basic properties.

2.1. Local theory of arithmetic Z-modules

Since the main goal of this paper (Theorem [[.2H]) is to prove a theorem connecting local and
global invariants, it is indispensable to work in local situations. In the f-adic case, this was the
theory of étale sheaves on traits, in other words Galois representations of local fields. In our
setting, the theory of arithmetic Z2-modules on a formal disk by Crew [Cr4], which can be seen
as a generalization of the theory of p-adic differential equations, should be the corresponding
theory. We briefly review the theory in this subsection.

2.1.1. Let us recall some notation and definitions of Crew. For details see [Crd]. Let R, k,
K be as usual (cf. [L04]). Moreover, we assume that k is perfect. We denote K := k((u)), and
choose a separable closure K*P. We set Gx := Gal(K*P /K), and let Ix be the inertia subgroup.
We define the bounded Robba ring (in fact a field) by RZ,K = U, <1 Aux([r,1}) and the Robba
ring by Rux = U,q Auwr([r,1[). We often omit the subscripts and write simply Rb and R.
We consider the 1-Gauss norm on R?, and denote its integer ring by Ogs, which is known to be
a henselian discrete valuation ring with residue field K. Thus, given a finite separable extension
L of I, there exists a unique finite unramified extension R?(£) of R whose residue field (of its
integer ring) is £. Put R(L) := R @xzs RY(L). Let h be a positive integer, and we put q := p".
We fix a lifting of h-th Frobenius ¢ of K on Ogys, which induces the Frobenius homomorphism on
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RP and R, also denoted by o. This extends canonically to R(£). Now, we put By := li_rr;ﬁ R(L)
where £ runs through finite separable extensions of K inside K%P. Then this ring is naturally
equipped with a Gi-action, and a Frobenius homomorphism o. We formally add “log” to get
the ring of hyperfunctions: we define B := By[log(u)]. Then the action of Gk extends canonically
to B, and so does 0. We also have the monodromy operator, which is the derivation by log(u).
We denote A, x([0,1]) by Oy or O™, and) O%w = O @ K" where K" denotes the
maximal unramified field extension of K. Crew defined an O%.-module by C := B/O%\.:. This
is also equipped with an action of Gy, an endomorphism o, and a nilpotent operator N. We
denote by can: B — C the canonical projection. By definition, the derivation N: B — B factors
through can, and we get var: C — B. These homomorphisms satisfy the relations N = can o var
and N = var o can.

2.1.2. Let us fix our conventions on the definition of differential A ([r,1[)-modules. In this
paper, we will adopt the definition of Kedlaya 8.4.3]. Namely, we define a differential
Ag([r,1])-module to be a locally free sheaf of finite rank on the rigid analytic line C([r,1])
over K with a connection. In other words, it is a collection { M}, .7 ~1 where M, is a finite
differential A ([r, '])-module equipped with isomorphisms A([r,71]) @ M, = M, , for ri < ro,
of differential modules, compatible with each other in the obvious sense.

Let us define the category C of differential R-modules. An object consists of a differential
A([r,1])-modules for some 0 < r < 1. Let M be a differential A([r, 1[)-module, and N be a
differential A([r’, 1[)-module where 0 < r,7’ < 1. Then we define the set of homomorphisms by

Home (M, N) := lim Homy (A([s, 1[) @ M, A([s, 1[) @ ),

s—1—

where s > max{r,r'}, and Homy denotes the homomorphism of differential modules.

For a differential A([r, 1[)-module M, we denote by I'(M) its global sections. Let M be a
differential R-module which is defined by a differential A([r, 1[)-module also denoted by M. We
define

M) = lim I(A([s, 1)) @ M).
s—1—
We note that this is an R-module with a connection. We say that M is a free differential R-
module (resp. A([r,1[)-module) if the module of global sections is a finite free R-module (resp.
A([r,1])-module). This is equivalent to saying that I'(M) is finitely presented by [Cr1 4.8].

Let M be a free differential R-module, and N be a differential R-module. Suppose there
exists a homomorphism ¢: I'(M) — I'(NV) which is compatible with the connections. We note
that there exists a homomorphism of differential modules M — A inducing ¢. Indeed, there
exists 0 < r < 1 and a free differential A([r, 1[)-module M’ which induces M. Take a finite basis
{ei}ier of T'(M’). Then there exists r < 1 < 1 and a differential A([r/, 1[)-module N inducing
N such that ¢(e;) € T'(N”) for any ¢ € I. This defines a homomorphism A([r/,1[) ® M’ — N’
inducing ¢. Taking the inductive limit, we get what we want.

2.1.3. For any commutative local ring A, we will denote by m4 (or m) its maximal ideal. Let
I be an ideal of A, and assume that A is an I-adic ring. We denote the I-adic ring by (A, )
in order to specify the ideal of definition explicitly. Let . := Spf (R[u],m). Note that in [Cr4],
he used the notation Spf(A) for Spf(A,m). He checked that on .7, the theory of arithmetic
Z-modules can be constructed in the same manner. The rings 9;2@ and .@;;Q(O) are also

defined in [Cr4]. The constructions of these rings are briefly reviewed in paragrapflm These

MIn 6.1], he defined O to be O™ &k K™, but this should be a typo.
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rings can be constructed by “analytifying” .@T o and 7! o o(0) where 27 := Spf(R{u}). Here
analytification roughly means to tensor with wrx CK [u ]] and take the completion with respect
to a suitable topology. There exists an analytlﬁcatlon functor

()™ Coh(‘@f@) — Mod(.@an(@)

where Coh(-) denotes the category of coherent modules and Mod(:) denotes the category of
modules. This sends 9;@ to 7% 0 and it is exact (cf. [Crd] 4.5]).

Let 0: . — . be a lifting of the h-th absolute Frobenius morphism. An F -9;; Q—module

)

(resp. F- Q—module) isa @T Q—module (resp. 72 Q—module) M endowed with an isomorphism
M = 0* M. We say that an F- Q—module M is holonomic if there exists a holonomic F'-

9;; Q-module N such that N** =2 M (cf. [Crd, 5.7]). In the same way, we define holonomic
F- .@an ( )-modules.

We note that the category of free differential modules with Frobenius structure is equivalent
to the category of holonomic F- 9;2 Q( )-modules. Indeed, by [Ts2), 4.2.1], we get that given

a free differential R-module M with Frobenius structure, there exists a differential R’-module
M’ with Frobenius structure such that R @ M’ = M. Thus, by 4.7), M can be viewed as
a holonomic 2%"(0)-module. By construction this induces the equivalence of categories.

On the other hand, we are able to characterize holonomic F-2*"-modules in the following
way. Let 0 be the coherent F- .@T -module RP/Ok. We say that a coherent 178 Q-module M

is punctual if there exists a ﬁnlte dlmensmnal K-vector space such that M Z @k V.

Lemma. — Let M be an F-2 Q—module Assume that M(0) := 2% ( ) @M is a finite free

differential R-module, and the kemel and cokernel of the canonical homomorphzsm a: M —
M(0) are punctual QEQ—modules. Then M is a holonomic F- Qy(@—module. In particular, if

) )

there exists a holonomic F'- .@; Q-module M such that (./T/lJ)a’n =M as QgQ-modules without

Frobenius structures, then M is a holonomic F-2% y Q-module.

Proof. We denote by C the full subcategory of the category of Q—module with Frobenius

structure consisting of objects considered in the statement of the lemma We define functors V
and W in the same way as [Crdl 6.1] or especially [loc. cit. (6.1.9)] (cf. also 0l below). We
first claim that V and W are exact functors. To see this, consider the following exact sequences

0N - M- M =0,
0— M — M(0) = Ny — 0,

where N7 and N5 are the kernel and cokernel of « respectively, and thus punctual .@T -modules
by assumption. We know that M(0) and N5 are holonomic F- 7 Q—modules and thus by

considering the canonical extensions (cf. ZL7 below), we get that M’ is a holonomic F- D% o s

module as well. Thus, we get Ext‘(M’,B) = Ext!(M’,C) = 0 for i > 0. Considering the
long exact sequence induced by the first short exact sequence above, we get Ext!(M,B) =
Ext!(M,C) =0 for i > 0.

Repeating the same argument as 6.8], we get a functor S’ (cf. also (6.1.10)])
from C to the category of solution data. It suffices to construct a canonical isomorphism M —
M(S'(M))?*. This can be shown in the same way as 7.4].

The last claim of the lemma follows from the first using [Crd, 4.5, 4.10, 5.2]. |
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Remark. — In the construction of the rings 9;3@ and .@2;@(0), one uses the parameter u.

Thus, a priori the construction depends on this choice. However, if we use another u’ such
that its image in ku] is a uniformizer to construct the rings, the resulting rings are canonically
isomorphic to those constructed using the uniformizer u. Indeed, using the notation of [Crdl
4.1], let O,(u) be the ring O, using the uniformizer u. Let u' be another uniformizer. Then
there exists a canonical isomorphism O, g = O,(u) @ Q = O, (v') ® Q. Moreover, in O, g, there
exists an inclusion O, (u) C p~"O,(v') and O,(u’) C p~"O,(u). Thus the claim follows from the
definition of 2" and 2**(0).

2.1.4. Let (A,m) be a 2-dimensional formally smooth local noetherian R-algebra complete
with respect to the m-adic topology, such that p € m, whose residue field k4 is finite over k.
In this situation, A is complete with respect to the p-adic topology by [EGAL 0r, 7.2.4]. Let
Ra = R ®w ) W(ka). Note that this is a discrete valuation ring. Now we get the following.

Lemma. — The R-algebra A is isomorphic to Ra[x].

Proof. By [EGA| Opy, 19.6.5], we get A/wA = ka[z]. Moreover, the ring Ra[z] is a complete
noetherian local ring, formally smooth over R, such that its reduction over k is isomorphic to
A/wA. Thus by [EGAl Ory, 19.7.2], we get the lemma. [

The situation we have in mind is the following: the R-algebra A is O 2,z Where 2" is a
formal curve, and z is a point.

We simply denote Spf(A, wA) by Spf(A). The formal scheme . := Spf(A) is called a formal
disk. The formal scheme . consists of two points: an open point and a closed point. We denote
by 7. the open point of .. We put . := Spf(A, m). In Remark below of this paragraph, the
reason why we introduced .¥ and 7 will be clarified.

Now, by the above lemma we can apply the constructions of Crew as in paragraph 2.1.3]
We define the sheaves 2! @ 7%

NS, DY g) = r@@;@x (g, DY o) =T(Z. 2L (0)),
NS, T5q) =T, 7% ),  Thr 7%q) = <y,@;ﬁ,@< ))-

By Remark 2.1.3] these sheaves are well-defined. One can check that coherent .@;Q—modules
correspond one-by-one to coherent 178 Q—modules We denote by F-Hol(.#) the category of
holonomic F-2?2-modules, and F- Hol(n ) the category of holonomic F- .@an( )-modules. The

scalar extensmn defines a functor denoted by (-)*" from the category of holonomic F- .@T
modules to F-Hol(.#’). We can check easily that Ry, , where K4 := Fr(R4) depends on the
choice of the coordinate x of .¥ only up to a canonical isomorphism: we denote it by R.o». We
denote by (F-)Hol'(ns) the category of differential module on R & (with Frobenius structure).

Let .7 := Spf(A) and ./ := Spf(B) be formal disks. If we are given a finite étale morphism
7: . — . this induces a functor 7,.: F-Hol(.) — F-Hol(.¥"), and also the pull-back 7*. In
the same way, if we are given a finite étale morphism of generic points 7/: 7 — 1./, this defines
a functor 7: F-Hol(ny) — F-Hol(ny/) and the pull-back 7%, and the same for Hol'(n) etc.

Remark. — We note here that .7 consists of a single point. There is no problem as long as we
only consider finite étale morphisms of .# like 7 above, but in this paper, we need to use push-
forwards and pull-backs in the situation where only morphisms on 7. like i are defined. Under
this situation, adding the generic point 7 by considering . instead of . makes descriptions
much simpler.
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2.1.5. Let Z be a formal curve over R, and let .# be a holonomic 9} Q-module. Let x € &

be a closed point. We denote by .7, := Spf ((5 2 ») where the completion is taken with respect
to the filtration by the maximal ideal. Let .# be a coherent 9} Q-module on % . Take an open

affine neighborhood % of z, and we denote by .@;@ 0® M the coherent 9}1 Q—module on .7,
associated to

7.8

70 ®F(%7-@§g,@) DU, ).

This does not depend on the choice of % . For a holonomic F' -9}(7@—module A (cf. BIT), we
put
Ms, = (DY @M, My, = (T, o(0) 8 M),

which are defined in F-Hol(.¥,) and F-Hol(n.#,) respectively. The following lemma combining
with [Cr4), 4.5] shows that the functors |, and |,, are exact.

Lemma. — The functor @;x o® (=) from the category of coherent Q:LZ g-modules to that of

coherent 9;@ Q—modules s exact.

Proof. Let S; be 7, @ R;. In this proof, we denote I'(Z ® R;, Qg(m)) by .@[(JT). It suffices to

show that the canonical homomorphism @((]:n) — Qgin) is flat. For this, it suffices to show that
gr(@é@) — gr(@é:n)) is flat where the gr is taken with respect to the filtration by order. This
follows from the flatness of Ox, — (O, )" where the completion is taken with respect to the
m,-topology. |

2.1.6. Let Delguw(Gx) denote the category of Deligne moduled®): i.e. finite dimensional K-
vector spaces, endowed with a semi-linear action of G (which acts on the constants K" via its
residual action), a Frobenius isomorphism ¢, and a monodromy operator N, satisfying Ny =
q N where ¢ = p" in 211l See §3.1] for more details.

In the following, for simplicity, we denote 9}97@ by 2°". Crew classifies holonomic F-%%"-
modules in terms of linear data (cf. 6.1]). To do this, let M be a holonomic F-2*"-module.
He defined in loc. cit.,

V(M) := Homgan (M, B), W(M) := Homgan (M, C).

These are Deligne modules, and define (contravariant) functors V, W: F-Hol(2*") — Delxur (G ).
There are the canonical homomorphism V(M) — W(M) induced by can, and the variation ho-
momorphism W(M) — V(M) induced by var. These satisfy many compatibilities, and for the
details see loc. cit. The main point is that we can retrieve the original module M from these
linear data (actually, we also need the “Galois variation”, which we do not recall here). We can
characterize some properties of M in terms of these linear data. For example M is defined by a
differential R-module with Frobenius structure if and only if the canonical map V(M) — W(M)
is an isomorphism. The most important property for us is the existence of the following exact
sequence (cf. [loc. cit., 6.5]).

(2.1.6.1) 0 — Homgan (M, O%) = V(M) = W(M) — Extlan (M, O) — 0.

(2) This terminology was first introduced by Fontaine in [Edl §1]. These are also called (¢, N, Gx)-modules, and
this terminology is used more widely, especially in p-adic Hodge theory. However, in our context, we believe that
“Deligne module” is more suitable.
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2.1.7. Let us conclude this subsection by recalling the canonical extension, which is one of key
tools in this paper. For the detailed argument, one can refer to [Crdl §8]. Let &2 := P}. Then
there exists a functor

F-Hol(#) — F-Hol(Z}, ()
M = M

where F- Hol(@ Q( 00)) denotes the category of holonomic F- .@5,, ((00)-modules. By construc-
tion, this functor is fully faithful, exact, and it commutes with tensor products and duals.
Moreover, we have the following properties: 1. M|, 2\{0} 1s a “special” convergent isocrystal,
2. Mg, = M, 3. M@ is regular at co. This M " is called the canonical extension of M.
By these properties, we remind that when M is a free differential module, M®" coincides with
the canonical extension of Matsuda in 7.3], and in this case, it sends unit-root objects to
unit-root objects.

2.2. Analytification

In §271 we will define a local Fourier transform. The local Fourier transform should be local
not only in the scheme theoretic sense, but also “rigid analytically”. In this subsection, we will
prove a crucial tool (cf. Proposition [Z2.3]) which is indispensable to prove such properties.

2.2.1. In this subsection, we do not assume k to be perfect. Let .2 be a formal curve, and take
a closed point x in Z". Take an isomorphism Oy, = V,[t] using Lemma T4l We will define

a ring (& gmm ))an in the following way. For a positive integer r and a non-negative integer i, we
define O,; to be Ox;, x[T]/(pT — ") as defined in section 4]. When r is divided by p™+!,
O,; possesses a QéfT)—module structure (cf. [Crdl, Lemma 3.2]). We define a ring

(ZUE)™ = lim (Hm Oy ; R0y, Z5) © Q).

Although it is not defined explicitly in loc. cit., this ring is used to define 7}t := (S, @an ),
)

which is the inductive limit of (.@i’g)an over m. To construct the analytification of &, glm 2. We

follow exactly the same way as in ﬂm there are several steps. For the first step, we take the

microlocalization of Opm+1; ®oy, .@( ™) with respect to the filtration by order (cf. [Ab2 2.1])
&m

and denote it by @‘" (m n2+1 . Second step, take the inverse limit over ¢, namely lim L ol g and
denote it by & glm 73 1 We put éA‘;Ez:L,)LH 0= =& (m")L +1,® Q, and we take the inverse limit over n
to define (éa(Q))an -

Now, for an integer m’ > m, we want to define the analytification of & };’ Qm ). Also for this,
m’'+1

we follow the same way as loc. cit. Put ¢ :=p . Let a be either m or m’. Then we define

@“’,gc)x to be the subring of g’,&‘;)x consisting of the finite order operators. Then we may prove in
the same way as loc. cit. that there exists a canonical homomorphism

Yt ET) @ Q — EM @ Q.

We define é%?};;m/) to be the p-adic completion of 1/1_1 (&&2” 92) N é‘;&ﬁ” Q. This ring is noetherian
by the same argument as [Ab2, 4.12]. We define é"é:lx%) = @@,52;’” ® Q.
Finally we define
2(m,m’)\an 2(m,m’)
(@f"w’(@ ) L @@nc x,Q -
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Obviously, there exists the canonical inclusion é/\ax(%’m/) — (é/\‘;f%’m/))an. In the same way as for

éa}[’(@, we define
m, an : o(mm+k)yan an : m,
(&g = 1im (B0 g = i (& D)

We point out that the rings (éz(%’m,))an, (éax(%’ﬂ)an, & does not depend on the choice of the
isomorphism @Qfm =V, [t] (cf. Remark 21.3). As an example, we have the following explicit

description whose verification is left to the reader. For 0 < r < 1, let us denote by | - |, the
r-Gauss norm on O*", we have

R , ag, b € O, and for any 0 < r < 1, there
(éam(%m ))an = Z apdi R Z b0 m) | exists C, > 0 such that |ag|, < C, for any k
k<0 k>0 and limy_, o |bg|» = 0.

At last, let us fix a few notation. Let .# be a coherent @?@—module. Let m” > m/ > m, and
& be one of (Z5)), (&8 ™), (£ D) &30 We denote & @ My by E @ iy M

z,

or & @ .# . These notation go together with Notatlon 21l

(F57)e

2.2.2. We put a topologies .7, for n’ > 0 and .7 on gjgznx%) in exactly the same way as in

2.2l Precisely, we put Uy : (of’,&?l o )) lé",&? o ) and we define a topology .7 on @3,52” ;le)
as the topology generated by {Uy;} as a base of nelghborhoods of zero. The topology 7, on
2mm)

nciwi(@

is the locally convex topology generated by {w‘”’UM} as a base of neighborhoods of

Fonm) (g Bl

zero, and 7 is the inductive limit topology. We get that &, 5 ' N ne.w  is dense in

(w™" é"rgznx%), ) where the intersection is taken in éjg e Q) Indeed putting O, := L&l Or.is

the intersection Oz N Oy is dense in Oy,c. In the same way as[[.2.2] for any finitely generated
glmm )—module, the ((g,(m ) Ir)-module topology is separated.

ne,x,Q ne,x,Q

2.2.3 Proposition. — Suppose we are in Situation (Ls) of[L2Il. Moreover, we assume & = ys.

)

Let m’ > m be non-negative integers, and .# be a holonomic @gQ—module (not necessarily
stable). We assume that

S(m, /+1 o _
Supp(éy'y" TV @ s, A)NT'X = L(s).

Then the canonical homomorphism

(2.2.3.1) EG 0 @y M= (B ) @ iy M

s an isomorphism.

Proof. Suppose Supp(@gg@ml) ® 50m) )N T*X = (. In this case, the source of the homomor-
b %7@

phism 2237 is 0. Since
Zmm)yan o = 2(mm’)yan E( m’) M,
( Q ) ®_@(m) - ( 5,0 ) ® (m m’) A Q ®_@(m)

we get that the target of the homomorphism is also 0, and we get the lemma. Thus we may
assume that Supp(cg’gl(’@m ) Qsm) MA)NT*X = 71(s).
b 4 ‘%"Q
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m')

First, we will see that the source of the homomorphism has an é/\j,(TQ -module structure for
some integer r. For this, let us start by remarking that .# is monogenerated. Indeed, since 2
is affine, the m-th relative Frobenius homomorphism can be lifted. Let us denote this lifting

by 27 and F: 2" — 2. Let the @g%7Q—module A be the Frobenius descent of .Z (cf. [Bef,
4.1.3]). Then by [Gall Proposition 5.3.1], there exists a surjection .@(,0),@ — . Take F* to
both sides. Since the canonical morphism @Eg?()@ —- F *.@Egg),@ is surjective, we get a surjection
@é}n?@ — M.

Denote by ¢: @%n?@/l >~ _# the induced isomorphism, and put I’ := (’E\%ng’+1) -I)n
E%n’ml+1). By Lemma [[.37], there exist @) € E?’mlﬂ) C E‘%ﬂm) R e (£, Bl +1))_p
a positive integer d such that z¢ — @@ — R € I’. Since the order of R is less than —p

there exists R’ € E%n’ml) such that R = wR’, and we get that z¢ — wS € Eg{n’m/) - I' where
m’+1

mia1, and
m/+1
)

S=Q+R ¢ Eg}l’m,). By increasing the integer d, we may assume that d is divisible by p
For any element P in ﬁgfn) = F(%,@gﬂ )), we get 2. P € P . g? —I—pﬁgfn). Thus for any
operator D € Eg}l’m)

n > 0, there exists S, € E%n’ml) such that

we also get 2% - D € D - 2% + pﬁg}l’m,). This implies that for any integer

(2.2.3.2) 2" S, e BYM LT

Let e be the absolute ramification index of R, and take r > (e + 1)d, which is divisible by
Pt Let o € T(Z, . #). We claim the following.
m')

Claim. — For any sequence {P;}i>0 in E(mm) N é;@ which is converging to 0 seen as

a sequence in (é"r(T m ,%), the sequence {P; - (1 ® )} in E(m ™) @ M converges to 0 using

the (E%gl), h)-module topology. In particular the sequence converges to 0 using the natural
topology which makes the module an LF-space by Lemma [[.2.3] and Lemma

Let us admit this claim first, and see that there exist a canonical éAaT,(ZLQ?n )

n E%Sl) ® M. For P € c?,&?’ml), we may write P = ZiZOPi with P, € é?g?’m/) and the

sequence {P;} converges to 0 in c?,&?’ml). Then the claim says that {P; - (1 ® «)} is converging

to 0 in Eg;’ml) ® A . So we may define P- (1@ a) by > ;5 F; - (1 ® @), and we get the action

of &5 2mm’) on E(mg ) ® A since the latter space is separated.
Let us verify the claim. By ([2:23.2)) and the choice of r, we get

-module structure

'\ n ~ ’

<?> = w"T,, mod EF;S ). r,

where T, € Eg;’ml) (e.g- Ty = Steq1yn € E%n’ml) when r = (e 4+ 1)d). We denote by d;,, the
order of the image of 7T, in Eg?z’m,). Let E, = E(}ng,) N éA?(,T’m/). Let @ be an element of
(B )N + @' E, for some integers N and N’ > 0. We may write

Q=Y. (%)"

n>0

where @, € A := @:& Ry {0} gt Then Q, € (A)ny +w™ A for any n > 0. Thus, for any
n > 0, we get

Qn (%) € (E%n’ml))M+N +wNI(EL(gg )+ E(mm) I
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where M := max{d;n—1 | ¢ = 1,...,N' — 1} = dnr—1 n/—1. Summing up, there exists
an increasing sequence of integers {Mj}r>o such that if Q € (E,)v + w™N'E,, then Q €
(E(QT m,))MN,JrN +w@ (E(mm )) + E(m(&n) I'. We can find a sequence of integers {Nj}i>0
such that the sequence { Ny + M} }>¢ is strictly decreasing. Back to the claim, for any integer
k > 0, there exists n; such that P; € (E,)n, + wFE, for any j > nj;. Then, we get that
Pj-ac @((E\(}nm ))Mk+Nk +w (E(}nm ))), and we get the claim.

There are two natural homomorphisms

a: BT @y M= ETT) @iy M, B ET 0l EGT) @

where « is induced by the inclusion Ec(% 0 m) 5}?& ) and [ is defined by extending linearly the

canonical homomorphism .Z — E- op )®% using the 5}?& )_module structure on E(m ™) ol

defined above. We can check easﬂy that foa =1id. Thus « is 1nJectlve Let us see that « is

o(m,m’)

surjective. It suffices to show that « is a homomorphism of éaT 50 -modules. Take an element
Pe 5;(’:’5 ) 1t suffices to show that

(2.2.3.3) a(P-e)=P-ale)

for any e € EFQ/ 0 m') @ 5(m) A . By density (cf. 22.2)), there exists an integer n > 0 such that

P is contained in the closure of E((Q/Q ™) (éar(TQ?n ), ). Consider the (éar(TQ?n ), I )-module
m')

topologies on the both sides of a. Since the both sides of « are finitely generated over éAaT,(T’Q ,
we get that these are Fréchet spaces by 2.2.2] and we get that the topology on the source of «
is equivalent to the (E gfng ), I,)-module topology by the open mapping theorem. Since « is
E(m(g’ ) -linear, it is continuous. Since the target of « is separated, we get that ([2.2.3.3]) holds
by the continuity of a. We conclude that « is an isomorphism.

Let us finish the proof. It suffices to see that
(2.2.3.4) (ER™ N @l y_ m &) @ M

S

is an isomorphism where ¢ := p"™'*1. When . is a finite projective .@g?@—module, the equality

is obvious. By the same argument as Lemma [[.3.4], é"n s Q) is flat over @gfngg for any positive

integer 7. Since 7% 2@ is of finite homological dimension, there is a finite projective resolution
Po — M whose length is [ by [Be6l, 4.4.6]. (If fact we can take [ to be 2.) We have the following
diagram where the bottom sequence is exact.

0—= ("o Zi—= ——= (G0 2y —= (GG @ M —0

| l o

0——=&" 0 2 Emm) @ 2, EM) @l —— 0

ne,s,Q ne,s,

Let us show that R! lim lim (cg"(m " )®@j) = 0 for any j. This is equivalent to saying R lim | Fmm) _

nc,s,Q nc,s,Q

0 since Z; is finite projective. Let |- |, be the p-adic norm on é"rg s Q) Let E,, be the closure

of cf’(gl"lgc)s o In é"éc s%) with respect to | - |,-norm. Then R! fm E, = = Jim | é"é:ls%) (cf. the

proof of [Ab2, 5.9]). Now, apply [EGAL Oy, 13.2.4 (i)] to the system {E,} with respect to the
p-adic norm, and the claim follows.
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By applying L&l to the bottom sequence of the diagram above, we get that the sequence

m,m/’ .. plmm) m,m’)
Léancs(@ ® Py —)L(b@ncs(@ QR P —)Lgncs(@ QM — 0
is exact. Since (Z2.3.4)) is an isomorphism for projective modules, by using the right exactness
of tensor product, (2234 is an isomorphism in general, and we conclude the proof of the
proposition. Moreover, when we apply gnn to the bottom sequence of the above diagram, we
get that the vertical homomorphisms are isomorphisms, and thus the top sequence is also exact.

This implies the flatness of (gi(g,m’))an over @F%@Q [
2.2.4 Corollary. — We use the notation of Proposition 2223l Suppose moreover that A is

stable. Then for m’ > m the canonical homomorphisms
( 7T) ( liT)
E m ®j(m) M — (é;g )an ®@(m) %, Ex Q ®j(m) M — & Q ®j(m) M
are isomorphzsms.

Proof. Clearly the first equality implies the second one. To prove the first one, it suffices to
show that lim (&, (m m ))an ® M= (6 (m’ ’T))an ® M since E( ’T) is a Fréchet-Stein algebra
(cf. [AD2] 5.9]). For thls we only need to repeat the argument of the last part of the proof of the
previous proposition. Namely, we prove that R! Li&lm,,(é(7g/’m,,))an = 0 using [EGAL Oy, 13.2.4
(i)]. The detail is left to the reader. [ |

2.2.5. Let 2 be a formal curve over R. Let .# be a stable holonomic @%ﬁbg@—module, and let
s be a singular point of .#. Then by the Proposition 2.2.3], for any integers m” > m/ > m,

the 1Enodule @gs(’g’m”) ® M .(Cf. L.3.10) possesses a canonical (@s(jg))an—module structure, and in
particular, we get a canonical homomorphism

w; (@(%/))an ® % N é/i(’g/’m”) ® %

S

Taking the inductive limit over m’, we get a canonical homomorphism
Ms, — Elg® M.

By an abuse of language, we sometimes denote the image of o € M where M, is either
(.@(m) ® M or M|s, by 1 ® a.

Let % be an open affine neighborhood of s such that there exists a local parameter at s
and s is the unique singularity of .# in % . Then by the proposition, we get Egn Qm ) QM =
é/\as(’g’mﬂ) ® 4. Now we define topologies as follows.

Definition. — (i) We equip gl(gl’mﬂ) ® A with the natural topology as an Eg(ym (l@m")—module
which makes it an LF-space by Lemma [[.2.3] and Lemma [[.3.2] Note that this topology does
not depend on the choice of % by the same lemma.

(ii) We equip (@S&/))an ® /// with the projective limit topology of the projective system of
Banach spaces {O,,,m+1 ®(.@ ) ® M)} >0+ Lhis makes (@g&/))an ® M a Fréchet space.

)

Flm/,m”)

Remark. — (i) The topology on c?s%l ® A is also equivalent to the (Ey, 5 °, 7 )-module

topology by Lemma [[.2.3]
(ii) The homomorphism 1 is continuous by the claim in the proof of Proposition [2.2 In

particular, if a sequence {a;} converges to « in (@§ 0 ))an ® M, we get that {1 ® a;} converges
to 1 ® o in g‘;(gl’m”) ® M .
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2.3. Applications

In this subsection, we will give two important corollaries of Proposition [2.2.3]

2.3.1. The following corollary plays an important role when we prove a fundamental properties
of local Fourier transforms (cf. Lemma 2.4.8] and 2.4.9]).

Corollary. — Let 2 and 2" be two formal curves, and take points x € 2 and 2’ € 2.
Assume that there exists an isomorphism v: .7y — %y of formal disks over R.
(i) Let 4 and A’ be holonomic 9%1?@ and @(Wﬁ)@—module respectively, and assume that

(D™ @ ) S (D)™ @
as (@iﬁ%)an—modules. Then there exists canonical isomorphisms

(B @) = &

m?T ~Y
e ea, (@G o) =l o.a

xT

for m' > m.
(i1) Let A and .#' be holonomic .@% 0 and 9}{, Q—module respectively, and assume that

L*%’Sx = %/’Sz/

as Q;EQ—modules. Then there exists a canonical isomorphism i, (éﬂQ ® ///) & é‘j, Q QM.

Proof. First, let us prove (i). We get

WG 0l =5 (G 0 S LGN 0 (G @)

5 @I 0 (T 0. d) S G o M BT e

Here we used Proposition 2223 two times at (%), and ' denotes the isomorphism induced by

t. To show the equality for éag(r Q), it suffices to use Proposition 223 Corollary 2.2.4] and the
T)

Fréchet-Stein property of Ea(y o Where 7 is an affine neighborhood of .

Now, let us prove (ii). Let .Z be a .@{T%’Q—module. Let .# (™ be a coherent .@%?@—module

such that @}K 0® M = g7 and the same for .#'™). Then since these are coherent, there
exists IV such that

S D5, (@{(é/\?@)an ® Y AUL NN (‘@gf%?@)an ® 'm

Thus (ii) follows from (i). [ |

2.3.2. Another important corollary of the proposition is the following comparison result of mul-
tiplicities of characteristic cycles (irregularity of Garnier) and irregularity of Christol-Mebkhout.
We assume that there exists a lifting of h-th absolute Frobenius R — R. Let us review the defi-
nitions first. Let M be a solvable differential R g-module. Then by [Kedl 12.6.4], there exists
the canonical decomposition M = 4., Mg where Mg is a differential R x-module purely of
slope 8. We define irr(M) := 5., 8- dim(Mg). Let 2" be a formal curve over R, and S be a

() Here, Christol-Mebkhout’s decomposition theorem [CM4] 2.4-1] might be sufficient since we are only dealing
with free differential modules in the following.
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closed subset of 2" such that its complement is dense in 2. Let .# be a convergent isocrystal
on % = %4 \ S overconvergent along S. For z in S, we define

irSM () = e (A ,,).

We also have the irregularity of Garnier [Ga2l 5.1.2]. For simplicity, we assume moreover that
M possesses a Frobenius structure. Let us denote by j..# the underlying ij% g-module of A,

which is a priori a coherent 9}{’@(5)—module. This is a holonomic module, and he defined@]
for x in S

irr G () = X (R Hom, (///,sp*(’)]m[%K)) — (my(jpt) — vk(A)),

220

where m, denotes the vertical multiplicity at . At the time he defined this irregularity, the

finiteness of X(R Hom i (A, sp*Om)) was not known. Now, using some results of Crew, this
Z

finiteness is easy, and this is also proven in the next corollary.
The following corollary has already been announce by the second author using a local
computation, which is different from our method here.

Corollary. — Let .4 be a convergent F-isocrystal on 2\ S overconvergent along S. Then
we have
(2.3.2.1) X(R”Hom@;{ Q(///,sp*o]x[)) =0.

Moreover, we have

(2.3.2.2) it () = irSM ().

xT

Proof. First of all, let us show the equality 2.3.2.1)). Let i: x — 2". The ring O*" := sp, O, =
O qls, has the 9}1 g-module structure. By Lemma 2T, we get

i ~ i t an
R Homgf%@(///,sp*o}x[) ~R ’Hom@;z’@(gyz@ ® M ,O0™).

By using the notation of B.1.4] in the next section, we get that

R'Hom,: (2%, o @ #,0™) 2 H=Ni"Dy (M) = H™ ' (4) = 0.

DY
by [Cr3l 2.2]. Thus the first claim follows.

Now, let us start the proof of the equality of the irregularities. The irregularity irrgM only
depends on .#|,, by definition. By Corollary 2.3.1] combined with Theorem [[.5.T], we get that
irr$® only depends on its analytification as well. This is saying that we may assume that
2 = A', 2 = 0, and . is the canonical extension of .# ln.- Note that, thanks to (Z3.2.1)),
irr$a" satisfies Grothendieck-Ogg-Shafarevich type formula (GOS-type formula) by [Ga2], 5.3.2].
By [CM, 1.2], we know that irrS™ also satisfies GOS-type formula.

The equality (2.3.2.2)) holds when .# is regular singular at x. Indeed, the differential module
A |y, being regular is equivalent to saying that the CM-irregularity at « is 0. It suffices to show
that irrgar(/// ) = 0. Now, by the structure theorem of regular p-adic differential equation
12.3] and the additivity of irr$®* (cf. [Ga2l 5.1.3]), we are reduced to showing in the case where
M is a rank 1 differential module. For this case we refer to [Ga2, 5.3.1].

M1n loc. cit., he defined only in the case where = is a k-rational point, but we do not think we need this
assumption here.

(5) See A. Marmora, About p-adic Local Fourier Transform, Poster 2 at Journées de Géométrie Arithmétique de
Rennes, available at http://perso.univ-rennesl.fr/ahmed.abbes/Conference/posters.html|
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Finally, let us prove the general case. By GOS-type formulas, we get

X(B, ) = k() - x(B) — M () — 1o (),
X(]@, M) =1k(AMA) - X(]@) — S () — i $ ().

By using the regular case we have proven, we get irrtCM (7)) = irrG2 (L#) = 0 since .4 is regular
at co. Thus comparing these two equalities, we get what we want. [ |

2.4. Definition of local Fourier transform

In this subsection, we define the local Fourier transform. We only define the so called (0, o0")-
local Fourier transforms. In a later section, we will define an analog of (oo, 0’)-local Fourier
transform in very special cases, and we do not deal with (oo, o0’)-local Fourier transform in this

paper.

2.4.1. Let us fix a situation under which we use the Fourier transforms. Let h be a positive
integer, and put g := p". We assume that the residue field k of R is perfect. We moreover assume
that the absolute h-th Frobenius automorphism of k lifts to an automorphism o: R = R.

We assume that the field K contains a root 7 of the equation XP~! 4+ p = 0 (so that it
contains all of them). The Dwork exponential series 6.(x) = exp(m(x — 2P)) in K[z] has a
radius of convergence strictly greater than 1 and it converges for x = 1 to a p-th root of unity
¢ = 0(1). The choice of 7w determines a non-trivial additive character v, : F, — K*, by sending
x to ¢*. Conversely if ¢: F,, - K* is a non-trivial additive character, then (1) is a p-th root
of unity in K and the polynomial XP~! + p splits completely in K. There exists a unique root
my of XP~1 4 p such that my, = ¥(1) — 1 modulo (¢(1) — 1) and then we have Or, (1) = ¥(1).
For the details see [Bell, 1.3].

We put o = 1&}“ := Spf(R{zx}), and & := @}%x which are the affine and projective
lines over R with the canonical coordinate z. We denote the dual affine and projective lines
o = A}z o and P = IP’}” We denote by 0 and & (or 9, and 9,/ if we want to clarify the
coordlnates) the differential operators corresponding to z and z’. We denote by oo O (resp. oo )
the point at infinity of 2 (resp. 2'). Let 2" := Pl x IP’;,, and Z := ({oo} x IP’}E YU (PL x {o0'}).

To summarize notation once and for all, we use terminologies of the next section, and consider
the following diagram of couples:

(2.4.1.1) (2".2)
— —
(2, {o0}) (7", {o'}),

where p and p’ are the projections. These morphisms are not used till the next section.

If we take 2" to be & (resp. /'), we are in Situation (L) of [L2] using the canonical
coordinate. We use freely the notation of [L21] especially K, {d}™™").

For a smooth formal scheme 2~ over R, we put 2" () := 2 @R R. We denote by y (resp. y')
the canonical coordinate of 2() (resp. 22'(1) induced by z (resp. 2’). The relative Frobenius
of IP’,l€ lifts to the morphism Fp: &2 — 2 sending y to £¢. We have the similar morphism for
', and denote the morphism by Fu.

Let us introduce some notation for a formal disk around a closed point of &/. We put
& = Spf(R[u]) and ." := Spf(R[u']). We denote n» and nys by n and 1’ respectively. Let
L be a finite unramified extension of K. We put .7 := Spf(R[u]) where Ry denotes the
integer ring of L, and denote 1, by n7. Let s be a closed point of «/. Let ys be a lifting of
Ys := [ 4 s(z — &’) where s’ runs over rational points of &7 which are lying over s. We define

33



T, L — 7 by sending u to ys. We note that if we take another lifting Y., then there exists a
canonical equivalence of functors Tg = Tg and 7y, = Ty, since ys and y, y.. are congruent modulo

S

w. We denote T~ and 75, by 75 and 74, respectively.

For 5 € A} (k:), let s be the closed point of Al defined by s. Let ks be the residue field of
s, Rs be the unique finite étale extension of R corresponding to ks, namely W (ky) Qw k) B,
and K, be its field of fractions. Let s be the closed point of @7 := &/ ® R, defined by s, and
Py = P R Rs. The rational point s corresponds to an element of kg also denoted by s, and
take a lifting 5 of s in Rs. We have the homomorphism oz: % — . sending u to z — 6. The
functors 0% and o3, do not depend on the choice of 5 up to a canonical equivalence. We denote
oz and o3, by of and o, respectively.

By the étaleness of R over R, there is a canonical inclusion Ry — O «,s- We define 75: S —
¥, by sending u to x —5. Also in this case, 7% and 75, do not depend on the choice of § up
to a canonical equivalence and we denote them by 7¢ and s, respectively. Let 7: .s — 7 be
the finite étale morphism induced by sending v’ to 1/2’. Summing up, we defined the following
morphisms.

AL 5 K,
75 & lb 7' Moot = 1
Al s — S

Here ¢ is the base change morphism.
Now, we get the following isomorphism

71 Agcur (W W 1) = Ak ({0 fwms, @ fwim]) > Ko {0},

where the first isomorphism sends ' to wz~!, and the second isomorphism is that of Lemma

36, and thus 7(u') = 70~ 1.
2.4.2 Definition. — (i) Let .# be a stable coherent @gé—module. Let

Char(.Z) =X U U 7 1(s),

where X is the zero section. Take s € S. Let m” > m’ > m be non-negative integers. The
microlocalization & s(g ") @ M is a finite K {0} m")_module by Lemma [3:2] and using 7,
this can be seen as a finite Ag /([wyn/, W })-module. We define a connection on éz(g/’m”) ® M
by

V(o) = (77 10%) - a ® du/,

where o € ‘9@(@ @.#. We denote this differential Ax w ([wins, Wiy })-module by @‘"(m m’ )(%)
We used the same notation in[I.3.10] but as ertten there, from now on, we redefine the notation.
For a fixed m’, the projective system {@@;6 m )(% )}m,,>m, defines a differential module on
Ag w ([wi, 1[) by Proposition [L31T], which is denoted by é";g’ﬂ (). This defines a differential
R k-module which does not depend on the choice of m’ up to a canonical isomorphism by the

same proposition.

Now, let .# be a holonomic 9;7Q(oo)—m0dule. Let s in o/ be a singular point of .Z. Take
a stable coherent .@;ﬂé—module ™) such that @;Q @ M™ = 4|, Then .4 defines
the differential R,/ x-module &, S(EQT) (.2/™)) which does not depend on the choice of m’ up to a

canonical isomorphism. We see easily that this does not depend on the choice of .Z (™) as well
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in the category of differential R-modules. We denote this differential R-module by %, 7(rs’°°/) (A),

or 9’753;0 )(/// ) if we want to indicate the base, and we call it the local Fourier transform of .#

at s. When s is not a singular point of .#Z, we put 9}&8’00,)(/// ) = 0. This defines a functor
F12°): Hol(Z], o (00)) — Hol (1)

for any closed point s € 7. Here Hol denotes the category of holonomic modules. If no confusion
can arise, we omit the subscript .

(ii) Let M be a holonomic F-%*"-module, and let s € A!(k). Take the canonical extension
A of M at s: this is an F—@;S’Q—module on P \ {s,00} overconvergent along {s,c0}, we
have |5, = 0; M, and oo is a regular singular point (cf. ZZI7). We define the local Fourier
transform of M at s to be F&<) (L4). We denote it by <I>7(f’°o,)(./\/l), or @f’?/)(/\/l) if we want
to indicate the base. This defines the functor 7

@) F-Hol(.#) — Hol' (1} ).

If no confusion can arise, we omit the subscript 7.
We sometimes denote m € I'(, M) by m € M. As in[225 any m € M defines an element
in @) (M). We denote this element by 7.

2.4.3 Remark. — (i) By using the stationary phase theorem [L2Z2] we may prove that the
local Fourier transforms are free differential R-modules. Moreover, we can also prove that the
local Fourier transform coincides with that defined by Crew (cf. Corollary .2.3]). Using this, we
will endow local Fourier transforms with a Frobenius structure later in §5l

(ii) In Definition (ii) above, we can also construct 0 in a purely local way (i.e.
without using canonical extensions). For a holonomic 7% -module M with Frobenius structure,
we define the local Fourier transform to be &*" ® gan M, and put a connection in the same manner
as Definition (i) above.

A problem of this construction is to see that this is a differential R-module. For this, we
need to compare with Definition (ii), and this is why we did not adopt this definition.
Namely, the module coincides with T'(®(>)(M)) by Lemma 244 below. As written in (i), we
will prove that ®©>)(M) is a free differential R-module. This shows that &2* @ M defines a
free differential R-module, which is what we wanted.

By this comparison, once we have the stationary phase formula, the functor &*" ®gan (—)
from the category of holonomic Z*"-modules with Frobenius structure to the category of &2"-
modules, is exact by Proposition below. However, we do not know if &2" is flat over Z?"
or not.

2.4.4 Lemma. — Let .# be a stable holonomic .@f?;%—module, and let s in o/ be a singularity.

We get an isomorphism F((fs(’g’ﬂ (A)) = cfi%’ﬂ ® A . In particular, for a holonomic 9{;’@(00)—

module AN and its singularity s € < , we get T'(F5°) (1)) = éfv@ ®N.

Proof. Using Proposition 2.2.3] and Corollary [2.2.4] there exists an affine open neighborhood %
of s such that for m’ > m

B ea =8 0w, ESDeu=s%eu.

Thus we get the lemma by the fact that Eé,;n g) is a Fréchet-Stein algebra (cf. [Ab2] 5.9]). H
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2.4.5. Let L be an unramified finite extension of K. Then there exists a finite étale morphism
r: ., — &% sending u to u. This defines a functor Res% := r,. Then the following diagram of

functors
L

F-Hol(1) —=% . FHol(.%)

<I,(Lo,oo’)l lq,gg,w’)

F—Hol/(n}d) F-Hol/(n’K)

L
Resy

is commutative up to a canonical isomorphism. The verification is straightforward.

2.4.6 Proposition. — The functors F ) and &&= are ezact.

Proof. For .Z(5:°°) it follows from Lemma [[:3.4l For &) use the fact that taking canonical
extension is exact. |

2.4.7 Definition. — For s € R, we define a free differential R,, x-module £(5) in the following
way; the underlying module is R, x. The connection is defined as follows:

V(1) =5 -mu?® du.

Let 5’ be an element of R whose class in k is equal to that of 5. Then there exists a canonical
isomorphism £(3) — L£(3") sending 1 to exp(m (s’ — 3)u~!). This shows that the differential
module £(3) only depends on the class s of s in k.

Now, take an element s € Al(k). Let 5§ € K, be a lifting of s in ks. Then we get a differential
Rr,-module L(s). As proven above, this does not depend on the choice of liftings up to an
isomorphism. We denote this abusively by £(s). This is called the Dwork differential module.

2.4.8. Using the notation of 2.4.1] we have two lemmas. The definition of F’ —9} o(00)-modules
is recalled in B1.1]

Lemma. — Let .# be a holonomic F—@im g(00)-module, and s € Al (k). Then there exists a
canonical isomorphism

FEN M @ K,) S 05 Gl s,)
in the category Hol’(n’KS). Here # @ K, denotes the pull-back of M# to oty = of Qr Rs.

Proof. There exists the canonical isomorphism a: .7 = .%,. Using Corollary 2.3.1] it suffices
to show that there exists a canonical isomorphism o (.# ® Ks)|s. — .#|s,. The verification is
straightforward. [

2.4.9 Lemma. — Let .# be a holonomic F-@;z g(00)-module, and s € Al(k). Then we have
the canonical isomorphism

TN () 2 ReslEs (@0 (Tl |5,) Oy, L(5)).

Proof. When s is a k-rational point, the verification is just checking the definition using Corollary
231 When s is not a rational point, we need to check that Resgs (FE)N @ Ky)) =
F(5:59) () by using the notation and result of Lemma2.Z.8 above. The verification is easy. W
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3. Complements to cohomological operations

In this section, we review some known results of six functors which are indispensable in this
paper, and give complements to properties of geometric Fourier transforms defined by Noot-
Huyghe. The proofs for the properties of geometric Fourier transforms are almost the same as
that of [La2], so we content ourselves by pointing out the differences.

3.1. Cohomological operations

3.1.1. In this section, we assume k to be perfect. Let h > 0 be an integer, and we put ¢ := p"
as usual. We assume that there exists an automorphism o: R = R which is a lifting of the
absolute h-th Frobenius on k. Let 2" be a smooth formal scheme over R. We define .2” by the
following cartesian diagram.

L —Z

| e |

Spf(R) —— Spf(R)

Note that we are able to define the pull-back functor F* from the category of 7% Q—modules to

that of @}K g-modules even if there are no lifting of the relative Frobenius F)((};)k: X — X' (cf.

[Be6l Remarques 4.2.4]). Recall that an F (h)_@; g-module is a pair of a Q:LZ g-module . and
an isomorphism .# — F* #7 where .47 is the @Ef,’@—module defined by changing base by
0. We often abbreviate F(") by F if there are nothing to be confused.

3.1.2. Let R’ be a discrete valuation ring finite étale over R, and let € be an object of F(M)-
DP (Spf(R))). Let ®: € = F(W*% be the Frobenius structure of 4. There exists a canonical o-

semi-linear homomorphism € — F("*%7 sending = to 1®z. The composition € — FW*¢ %

%, where the first homomorphism is the canonical homomorphism, makes the complex € a o-
K-vector spaces. We note that this homomorphism is in fact an isomorphism since ¢ is. This
correspondence induces an equivalence between F()-DP (Spf(R)) and the category of finite
o-K-complexes, and we identify them.

3.1.3. Let us fix notation for Dieudonne-Manin slopes and Tate twists. Recall that we denote
by e the absolute ramification index of K. We denote by K,(t) the ring of non-commutative
polynomials defined by the relation ta = o(«)t, for every @ € K. For any a € K and integer
s > 1, we put

Klesseh) .— () /K (1) (t° — ),

endowed with the Frobenius action given by the multiplication on the left by ¢. It is a o-K-
module of rank s. When o(w) = w, we normalize the Dieudonne-Manin slope so that it is

purely of slope A := _1;[;}&“). For any smooth formal scheme 2" over R, we denote by Og?;gh)

the pull-back of K(®5¢h) by the structural morphism of 2.
Let us define Tate twists. For any 9} Q-module A and integer n, we put

—hn.,
M (n) =M D0, 5 OF 5",

This is called the n-th Tate twist of .#. Let us define the twist by a Dieudonne-Manin slope
A € Q. There is a unique way to write A = 7, where r and s are coprime integers and s > 0
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(if A = 0 by convention we put » =0 and s = 1). Let @w € A be a uniformizer; for any coherent
QEK g-module . and A € Q, we put

MO = M @0, , OF 37,

which is usually called the twisl®] of . by the slope A\. When o(w) = w, its Dieudonne-Manin
slope is indeed shifted by +\. The notation .#Z is slightly abusive because it depends on the
choice of the uniformizer w, whereas that for Tate twists is intrinsic. We give analogous defini-
tions for overconvergent F- 1socrystals. and free differentials modules with Frobenius structure
over the the Robba ring.

3.1.4. To fix notation, let us review the theory of arithmetic Z-modules concerning this paper.

We say that (27, Z) is a d-couple if £ is a smooth formal scheme and Z is a divisor of its
special fiber. Here, Z can be empty. Let (%, W) be another d-couple. A morphism of d- couples
f(Z,2) = (&, W) 1sam0rphlsmf 2 — % such that f(2°\Z) C %\ W and f~1(W) is
a divisor. The morphism f is called the realization of f, and if it is unlikely to be confused, we
often denote f by f. Let P be a property of morphisms. We say that the morphism of d-couples
f satisfies the property P if fsatisﬁes the property P.

Let 2 be a smooth formal scheme over R, X be its special fiber, and 2k be its Raynaud
generic fiber. Then we have the specialization map sp: Zx — 2 of topoi. Recall that, we say
that a QT g-module .7 is a convergent (F-)isocrystal if sp*(.#) is a convergent (F-)isocrystal,
and the same for overconvergent (F-)isocrystals (cf. [0LO.T).

Let (£, Z) be a d-couple, and we denote by D4 » the dual functor with respect to 9}{’@(2 )-
modules. If it is unlikely to cause any confusion, we often denote this by D. Let f: (27,2) —
(%, W) be a morphism of d-couples. We have the extraordinary pull-back functor f' from the
category of coherent 9;7Q(W)—modules to that of @}K@(f_l(W))—modules (cf. [BeT, 4.3.3]).

Let .# be a bounded coherent (F -).@T@’Q(W)-complex. When f'(.#) is coherent, we define
') to be .@j{%@(Z) ® fY(#). Suppose in turn that f' o Dy w(.#) is a bounded coherent
(F—)AZT% Q(f_l(W))—complex. In this case, we put

frat .= Dy zof oDy w)(M).

Now, suppose that the morphism of d-couples f i 1s a proper morphism. We have the push-
forward functor f+ from the category of coherent 9 ( f~1(W))-modules to that of coher-

ent .@;7Q(W) modules. Let .4 be a (F ).@%@(Z) module. Suppose 4 is coherent as a
@}KQ( f~Y(W))-module. Then we denote by ji.# the coherent module. We define f(.4")
to be the coherent 9;7Q(W)—module f+G(A)). Assume in turn that Dy 7z(A) is coherent
as a ij% Q(f_l(I/V))—module. We define

fih = Dy wo fyoDy z)(AN).

When we are given .# and .4 in [g&qc(@g)(Z)) (cf. 4.2.2, 4.2.3] for the notation

L
when Z is empty, but the construction is the same), we denote the object .# ®J([9% Q(Z)JV in
LDY (D5)(2)) by M @ N .

(©)This is called décalé in French.
(MDF¥or an overconvergent F-isocrystal, in [Mz], M®™ was denoted by M(A). We modify here the notation to
avoid any possible confusion with Tate twists.
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3.1.5. In this paragraph, let us summarize some properties of the cohomological functors de-
fined in the previous paragraph which will be used later in this paper. Let f: (2,2) — (%, W)
be a morphism of d-couples. We denote by dg-, do, dy the dimension of 2", %', and dy- — dw .
Then we get the following.

1. If f is smooth, we get f' = f+(d)[2d] (cf. [Ab3, Theorem 5.5]). If f is a closed immersion
and ./ is an overconvergent F-isocrystal, we get f'(.#) = f¥(.#)(—d)[—2d] where d
denotes the codimension (cf. [Ab3l Theorem 5.6]).

2. If f is proper and f: 2\ Z — & \ W is also proper, we get fi — f (cf. [Ab3, Theorem
5.4]).

3. Let .# be an object of Dcoh(@}( 0(Z)) and A" be an object of DCOh(QQ;,Q(W)). There

exists a canonical isomorphism fi(.# ® f'A) = foll @ A (cf. [Call, 2.1.4]. The com-
patibility with Frobenius pull-back can be seen easily from the definition of the homomor-
phism.).

By using [, we get Dy #(O2 0(Z)) = O o(Z)(—da ). Now, we will define the twisted tensor
product ® on 2 to be Dy z(Dy z(—) ® Dy z(—)). We note that the definition is slightly
different from that of [NHI1]. The main reason we introduce this new tensor product is the
following.

4. There exists a canonical isomorphism f'((—) ® (=))[d;] = f'(=) ® f'(-). Similarly, we
also have f*((—) ® (=))[—ds] = fT(=) @ f*(-) (cf. [AD3] 5.8]).

The following result enables us to compare these two tensor products in special cases.

5. If .4 be an overconvergent F-isocrystal, and .4 be a coherent F-2! 2 o(Z)-module. Then
we get MRN = .M @ N (dy) (cf. [AB3] Proposition 5.8]).

3.1.6. Now, let us see the proper base change theorem. Consider the following cartesian
diagrams of d-couples.

(2,2 —— (2, 2)

rloe

(& W) —— (&, W)

Here, we say that the diagram of d-couples is cartesian if it is cartesian for the underlying smooth
formal schemes, and 27\ Z' = (2" \ Z) x@nw) (# \ W). Then we get i' o f = f1 oi" (cf.
[Ab3, Theorem 5.7]). This isomorphism is compatible with Frobenius structures by the same
theorem. We call this the proper base change isomorphism.

Assume that f is proper. In this case, for a bounded coherent (F )—.@f%@-complex M, we
get it o fy(A) = flod'T (M) if the both sides are defined. This follows by using DoD = id [Vi,
IT, 3.5]. This is also called the proper base change isomorphism.

3.1.7. We also have the Kiinneth formula. Namely, let f: 2" — 27 and g: # — %' be
smooth morphisms between smooth formal schemes over a smooth formal scheme 7. Let D be
a divisor of the special fiber of .7. We denote by D, (resp. D, ¢, D) be the divisor of the
special fiber of 2°() (resp W), X" Xy %) which is the pull-back of D. Let .# (resp. 4) be
an element of I&Q " 7t )(Dgf)) (resp. LDQ qc(gg(y)(Dg))). Then we get

(f X @)+ (A Re oy N ) = (f1tl) Ry (94+-7)
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in Q?Q’qc(@g/),x a0 (D')). To see this, we apply the Kiinneth formula [Ab3] Proposition 4.9] to
the diagram

m%,wgf{w

and //[&Hégw) Oxi(Dyr) on ' x 7 %" and Oy (D y) @H(‘ng) N on X' xgX.

3.1.8. In this paragraph, let us see the relation between the rigid cohomology and the push-
forward of arithmetic Z-module. Let 2 be a proper smooth formal scheme of dimension d. Let
Z be a divisor of the special fiber of 2", Z be the complement, and U be its special fiber. We
denote by sp: Zx — £ the specialization map where 2k denotes the Raynaud generic fiber
of . Let f: (2,Z) — Spf(R) be the structural morphism. Let .# be a coherent @}K’Q(Z)—
module which is overconvergent along Z. Suppose that it is coherent as a .@j@’ -module. In
BLH, we noted that Dy z(Og o(Z)) = Oz o(Z)(—d). For an isocrystal M, we denote by M"
the dual as an isocrystal. This isomorphism leads us to the following comparison of dual functors

(cf. [Ab3 Corollary 3.12]):
(3.1.8.1) sp*(Dy z(A)) = (sp* ()" (—d).
We get the following relation with the rigid cohomology:

(3.1.8.2) Hifytt = HIF (U, sp*a)(d),
where d = dim(U). For the details, see [Ab3| 3.14]. To see the relation for cohomologies with
compact support, we use the Poincaré duality of rigid cohomology to get

(3.1.8.3) Hifi#t = HE (U, sp*.)(d).

rig,c

For the detailed account, one can refer to [Ab3l 5.9].
When £ is a curve, and for a holonomic .@j@ Q(JfZ )-module .#, we get that the following
pairing

(3.1.8.4) Hifotd x H Dy z(M) — K
is perfect. This can be seen from [Ab3l 5.5].

3.1.9. For the later use, we review the cohomological functors iy, j*, ji, ', and D in the
theory of formal disks. Let . be the formal disk over K. For an object M in F-Hol(n), j+ (M)
is by definition the underlying F' —@;‘E’Q—module. For an object N in F-Hol(.¥), we denote
2% o(0) ® N in F-Hol(n) by j*M. We denote by i: {0} < . the closed immersion. The
definitions of the functors 7', j' = j* are essentially the same as in the global case, and are used
frequently in [Crd], so for the details see [loc. cit, 3.5, etc.].

Now, we denote by D» (resp. Dy) the dual functor with respect to 29 (resp. 27 (0)).
These define functors from F-Hol(#) (resp. F-Hol(n)) to itself by 5.7]. For an object
M in F-Hol(n), we define jiM := Dyj,D,(M), and for an object N in F-Hol(.), we put
iTN = (i'DyN)Y where ¥ denotes the dual of o-K-vector spaces. By using facts of B.L5]
we get isomorphisms i1 D, = Dy iy and j7 Dy = D, j*. By using these isomorphisms, the
localization triangle 3.5.3] induces the following distinguished triangle:

(3.1.9.1) gt = id =iyt
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Definition. — For a holonomic F-7%' ,-module M, we put ¥(M) := V(D gy M) and &(M) :=
W(D.»M), and call them the nearby cycles and the vanishing cycles respectively. These define

functors
\I/, d: F—Hol(@?‘@) — DelKUr(G]C).

We note here that when M is a finite differential module on R with Frobenius structure,
we get Dy (M) = MY (—1), where ¥ denotes the dual as a R-module by (BI8IT]). For example
U(R) =2 V(R)(1) 2 K" (1). On the other hand, if M is of punctual type such that M =V ®
where V' is a K-vector space with Frobenius structure, we get that ®(M) = V.

3.1.10 Lemma. — Let M be an object of F-Hol(n). Then we get the following exact sequence:
0— M) @ d = M = j4M — M/OM(1) @k § — 0.

Proof. Since jijtjiM = jM, we get U(ji M) = U(j, M) by [Crd, 6.2]. We also get
U(jM) = ®(jiM). Thus, (ZIL6.1) induces the following exact sequence:

0 — Homgen (D(j3 M), O3,) — ®(ji M) — (4 M) — Extln (D(j M), O38.) = 0.
We get isomorphisms
RHom_@an (Dy(]+M), Oan) = RHom_@an(Oan(—l),j+M) = RHom@an(O) (R, M)(l)

Here the first isomorphism follows from the fact that D & gives an anti-equivalence of categories
combined with the isomorphism Do (O*") = O?"(—1), and the second by adjoint. Thus the
lemma follows. u

Remark. — We note that the dimension of M?=% and M/OM over K are the same by the
index theorem of Christol-Mebkhout [CM]| 14.13].

3.2. Geometric Fourier transforms

3.2.1. We briefly review the definition of geometric Fourier transform due to Noot-Huyghe
[NHI]. For simplicity, we only review under the situation of ZZ4.T]

To define Fourier transforms, we need to define an integral kernel .27 of the transform. We
define a convergent F-isocrystal on A! overconvergent along oo denoted by % in the following
way. Let ¢ be the coordinate. As an 0@17Q(oo)—m0dule, it is (9@1@(00). We denote the element
corresponding to 1 by e. We define its connection by

V(e) = —me ® dt.

This module is equipped with Frobenius structure. The Frobenius structure ®: F*.%, = %, is
defined by
P(1®e) = exp(m(t —t9)).

_ Now, let us consider the situation in 22Tl There exists the canonical coupling p: & x &’ —
A' sending t to z ® 2/. By the general theory of overconvergent F-isocrystals, the pull-back
w* Ly is a convergent F-isocrystal on 7 x ./’ overconvergent along Z in &2”. This is a coherent
@;,,vQ(Z)—module, and its restriction to 7 x &’ is nothing but H~'(4'.%;). By abuse of

language, we denote this 720 Q(Z )-module by p'.Z[—1], or sometimes by Zr - In the same

way, there exists a unique coherent complex of @i 9 Q(Z )-modules whose restriction to & x o7’
is H'(u+.%;). We also denote this by u+.Z;[1].
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3.2.2. Now, let us recall the definition of the geometric Fourier transform. We continuously
use the notation of ZZJ]l Recall the diagram (ZZIT]). Let .# be a coherent @;] g(00)-module.
Noot-Huyghe defined the geometric Fourier transform of .Z to be

(3.2.2.1) Tl M) =D (Lrp @6, (o) P H[2])
(=P (WL @6, (o) P A-3])).

She also proved that p| (Zr ®H(‘99”@( 00) o' ) is well-defined, and also showed an analog of

the result of Katz and Laumon [NHO| (see [Ab3, A.3.2] for a proof). Namely, the canonical
homomorphism

(32.2.2) P (L @6, o (00) DA 2]) = (M)

is an isomorphism. Since Fourier transform is defined using three cohomological functors p/,
| . . . . .
®, p’, and there is a canonical Frobenius structure on .7 ,, Fourier transform commutes with

Frobenius pull-backs. In particular, if . is a coherent F’ -9;; Q-complex, there exists a canonical
Frobenius structure on the complex .Z. ().

3.2.3 Lemma. — We have a canonical isomorphism
pt L (1)[2] = ,u!.,%r.

Proof. Note that j1] /o ((0,0)} is smooth. This shows that p' %y and put %, (1)[2] are generi-
cally isomorphic by The module 1'%, [—1] is concentrated at degree 0, and it is finite
over O p(00). This implies that it is an overconvergent isocrystal along co. Since the dual of
an isocrystal is also an isocrystal, u™.%; is also an overconvergent isocrystal along co. More-
over, both sides are overconvergent F-isocrystals. Thus, the two modules in the statement are
isomorphic by using and Theorem 4.1.1]. [ |

3.2.4. Let s be a closed point of . Let ks be the residue field and K be the correspond-
ing unramified extension of K, R, its valuation ring. Then there exists a closed immersion
is: Pl < P} sending @’ to (s,2’). We define Z(s-a') := i\(Zx ). In the same way, given a
closed point s in &', we define Z(z - s') on &. When s is a rational point, we can check that
(L (s 2")|y,.,) = L'(s) where L'(s) is the Dwork differential module 247 on 7'.

*

3.2.5. Finally, let us review a fundamental property of Fourier transform shown by Noot-
Huyghe. There exists an isomorphism of rings

v (P, D, () S T(2, D, (20))

sending 2’ to 7710 and &' to —wx. It is also shown by Huyghe that coherent Q}Q(oo)—
modules corresponds to I'(Z, .@;’Q(oo))—modules by taking global sections. Given a coherent
INEZS 9;,, Q(oo))—module M, we denote by M” (or Fyaiver(-#) if we need to indicate ) the co-

herent I'(Z, 9}, Q(oo’ ))-module obtained from M via transport of structure by ¢. For m € M
we denote by m the corresponding element of M”. .
Let .# be a coherent 9; Q(oo)—module. We denote by 4 (or Fnaiver(A) if we want to

emphasize 7) the coherent .@;z, Q-module corresponding to I'(Z2, .#)". We call this the naive
Fourier transform of .4 . Then Noot-Huyghe showed in [NHIL 5.3.1] that there exists a canonical
isomorphism

(3251) yn(%) :> rgsnaiveﬂr(f%)[_l]'
We often denote by m € .# to mean m € I'(Z, ).
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3.2.6. Standard properties of (-adic geometric Fourier transform explained in 1.2, 1.3]
hold also for p-adic Fourier transform with suitable changes. Since the proof works well with
little change, we leave the reader to formulate and verify these properties. Although the most of
these properties are not used in this paper, we still need a few analogous results. We will write
the statements of these results with short comments of the proofs.

3.2.7 Proposition ([La2l 1.2.2.2]). — Let V be a coherent F—@épf(R) g-module (i.e. a finite
dimensional o-K -vector space). Then, we have the canonical isomorphism

F(q' (V) Zig(V)(1),

where q: & — Spf(R) denotes the structural morphisms, and iq: Spf(R) < 22’ is the closed
immersion defined by 0 in &'.

Remark. — When V is trivial, another calculation for this Fourier transform was carried out
by Baldassarri and Berthelot in [BB]. In their calculation, there are no Tate twist contrary to
our calculation here. This is because the definitions of the Frobenius structures on the geometric
Fourier transform are slightly different. For the precise argument, see [Ab3l Remark 3.15 (ii)].

3.2.8. Let #’' be the dual geometric Fourier transform: the functor #': Dgoh(ﬁgz, Q) —
Dgoh(@;, Q) defined in the same way as .% except for reversing the role of p and p’. We get the
following inversion formula.

Theorem ([La2l 1.2.2.1]). — Let .# be a coherent F-@;Q(oo)-module. Then, there exists a
functorial isomorphism

F o F(M)2) = H(1).

Remark. — We may also prove the theorem in more general cases: let 2" be a smooth formal
scheme over Spf(R), and let & be a locally free sheaf of finite rank r on 2. Consider the
projective bundle p: & := P(& ® Oy ) — 2 to define the geometric Fourier transform (cf.
[NHI, 3.2.1]). Then the theorem is reformulated as .#' o Z (4 )[4 — 2r] = .#(r). Let Z be
the divisor at infinity of &2. For the proof, we need to show that there exists an isomorphism
T+(Op.0(Z)) = Oy glr](r). This can be seen from [Pel 4.3.2] and [Ab3] 3.14 or 3.15 (i)].

3.2.9. Let a € (¢—1)"'Z. We define a convergent F-isocrystal on &\ {0,000} overconvergent
along {0, 00} in the following way. As an Oz (0, c0)-module, it is O 5 (0, 00). We denote the
global section corresponding to 1 by e. We define its connection by

Vie) = (azx™!) - e® dr.
The Frobenius structure ®: F*.%, = %, is defined by
d(1®e) =227 ¢

We often use the same notation %, for the underlying coherent .@i@, g(00)-module. This is called
the Kummer isocrystal.

Proposition ([La2, 1.4.3.2]). — Let j: (£,{0,00}) — (£,{o0}) be the canonical morphism
of couples. Assume o € Z. Then we get that the canonical homomorphism

3T He — Ha

43



is an isomorphism. Moreover, let G(«, ) be the following K -vector space with Frobenius struc-

ture:
Gla,m) = Hyp(Ap \ {0}, o ® Z).
Then, we have
Fn(Ha)1] = K0 @ G(a,m)(1).

Proof. The first statement follows from Lemma B.IT0l For the latter claim, the proof works
essentially the same as in by replacing m* by m' and using the Kiinneth formula BT
The Tate twist appearing here comes from the isomorphism (B.I.82]). [ |

4. Stationary Phase

In this section, we will prove the stationary phase formula when the slope at infinity is less
than or equal to 1. However, in this section, we do not consider Frobenius structures on the
local Fourier transforms, so the stationary phase in this section is still temporary. This will be
completed in the next section.

Throughout this section, we continuously use the assumptions and notation of para-
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4.1. Geometric calculations

4.1.1. Following 2.2.1], we will define several invariants in the following way. These
notation are used throughout this section without mentioning. Let M be a solvable differential
module on the Robba ring. Then denote by rk(M) the rank, by irr(M) the irregularity, and
by pt(M) the greatest slope of M as usual. By [Ked, 12.6.4], we get the slope decomposition
M = @ Mp where Mg is purely of slope . For any interval I C [0, 00[, we define M :=
Dpser Mp C M. Let A be a holonomic F-@;@(oo)-module. For any closed point x in &, we
put

(M) = —1k(A|,,) <0, sg( M) = —irr(M|,,) <0,
ro( M) = dimg, (it ), g (M) = 1(M) + $:(M) — 1o( M),

where s can be taken to be any point in 7, and i,: Spf(R,) < 7 is the closed immersion for
x. First we have the following calculation.

4.1.2 Lemma. — We preserve the notation. Let

Cycl( M | o) =1 [A]+ D my - [77 ().

zeAl

Recall that m: T*AY — A is the canonical projection. Then for any closed point x € <, we
have (M) = —r and ay (M) = —my.

Proof. This follows from Corollary [

Let C' be a complex of Di’oh(.@gpf( R) Q) =~ Db (K-mod), where the latter category is the

derived category of complexes of K-vector spaces whose cohomology is finite dimensional. We

(® Actually, in what follows, we only use the notation M; for free differential modules, and the decomposition
theorem of [CM4] 2.4-1] is enough.
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put x(C) := > ,(—1) dimgx H(C). Let q: & — Spf(R) be the structural morphism. Let .# be
a coherent F—.@Lm,,@(oo)—module. We define x (o, A ) = x(q+ ).

We know that the Grothendieck-Ogg-Shafarevich type formula holds by [Ga2l, 5.3.2] or [ADbI]
2.4.7]. Using the above lemma, we can write the formula as follows.

(4.1.2.1) —x(, M) =r(M) = deg(x) - ag (M) + irr( M |,
red
4.1.3 Corollary. — Let .# be a holonomic 9;7Q(oo)—m0dule, and let s € o/ be a singular

point of A . Then we get

tk(Z () = — deg(s) - ag(A).

Proof. This follows from combining the Lemma 1.2l and Proposition [[Z4.3] |
4.1.4 Lemma. — Using the notation of Lemma 12, we get ro (M) = r(A) if and only if
mg; = 0.

Proof. When m, = 0, we know that .# is a convergent isocrystal on an open neighborhood of
x, and the lemma follows easily. Let us see the “only if” part. We know that dimgu V(.#) =
k() by 6.2.1]. By [Cx3| 2.2], we get

Z'x% = RHom(%ng’ Oan)* [1]7

where * denotes the dual in the derived category Df (K-mod). The exact sequence (ZI.6.1)
implies dimguw W(#Z|g,) = 0, and thus W(.#|s,) = 0. By the construction of the functor M of
§7], we get that .#|g, is a coherent O*-module, and in particular m, = 0. [ |

4.1.5 Lemma. — Let M be a solvable differential module on the Robba ring R over K. We
further assume that M is purely of slope 1. Let s € AL(k). Using the notation of Definition
247, we consider the tensor product M @x L(s) as a differential R -module. Then we get the
following.

(i) For almost all s € AL(k), we get

irrg, (M @ L(s)) = rk(M),

where irrg, denotes the irreqularity as an Ry, -module.
(ii) There exists an s # 0 in k such that the irreqularity irrg, (M ® L(s)) is less than vk(A).

Proof. Let us prove (i). We use the induction on the rank of M over Rg. Suppose there exists
a geometric point s such that

irr(M @ L(s)) < tk(M),  pt(M @ L(s)) = 1.

These conditions show that M ® L(s) has at least two slopes including 1. Thus, there exists the
/

canonical decomposition M ® L(s) = M} & M’_; where M is purely of slope 1, and M’ is
purely of slope less than 1, and these modules are non-zero. Thus, we get the decomposition

Mg Kg= M] @ L(—s) & M| @ L(—s).

Since M is purely of slope 1, both M) ® L(—s) and M”_; ® L(—s) are purely of slope 1 as well.
Thus by the induction hypothesis, the lemma holds for these two modules. This implies that
the lemma also holds for M.
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If pt(M ® L(s)) =1 for any s, we get the lemma by the above argument. Suppose pt(M ®
L(s)) < 1 for some s. Then for any s’ # s, we get pt(M @ L(s')) = 1. If there exists s’ # s such
that irr(M ® L(s")) < rk(M), then we may use the above argument. Otherwise, the lemma is
trivial.

Now, let us move to (ii). By using 2.0-1], there exists a number a in K whose absolute
value is 1, and an integer h such that the irregularity of M ® exp(maz ") is less than rk(M).
Here we are using the notation of loc. cit. We remind that in loc. cit., there is an assumption on
the spherically completeness of K. However, as mentioned in [loc. cit., 2.0-4], this hypothesis is
used only to use a result of Robba, and when p # 2, the assumption was removed by Matsuda
as written there. This result was extended also to the case p = 2 by Pulita [Pul Theorem 4.6],
and we no longer need to assume the spherically completeness here. Arguing as the proof of
[Ga2l 4.2.3 (ii)] usmg Mt 1. 5] there exists a number @’ in K whose absolute value is 1
such that exp(max™ Pt ) is 1som0rphlc to exp(ra’z~!) as differential R-modules, and the latter is
isomorphic to £(a’) where the overline denotes the residue class. |

4.1.6. Let & be a coherent F—@;’Q(oo)—module. We denote by &' 1= 1 (F(&)) the geomet-
ric Fourier transform. We have the following analog of 2.3.1.1].

Proposition. — (i) r( Z deg(s ) + k(&' ]nee N11,000) — (& 0 )11,00()-
SES

= ) deg(s E") 4 k(" [0 )11,000) = IT((E” o )11,00])-
s'es’
(ii) For s' € /' \ {0}, we get

re(6) =1(8) +1k((Elpoe)1) = 11((Elye )1 @ L@+ ) e )-
(ii’) For s € o/ \ {0}, we get

rs(&) = 1(&) + k(& [noo)1) = (6| )1 ® L (5 - 2) s )-
(iii) 1o (&") = 1(&") + rk((Elnc ) jo,1) — (€l o,11)-
(iii’) 10(&) = (&) + k(6" |y o,1) — (& o )-

Proof. The idea of the proof is the same as that of loc. cit. We sketch the proof. By the proper
base change theorem [3.1.6] we get

re (&) =x(o,6® ZL(x- ).

Let us prove (i). Since both sides of the equality are invariant under base extension, we may
assume that S consists of rational points. We have a4(&) = a5(& @ Z(x - §')) for s,s" # 0 since
Z(x - ') has no singular points in /. Using (@21, we are reduced to showing that

—r(&) = irr(Elpee ® L(2 - 8)lpo) = R((Elnoc 11,000 = IT((E e N11,000)

for some s’ € k. This follows from Lemma (i). The claims (ii) and (iii) follow from
(i) and @I2T), and (i)', (ii)’, (iii)’ follow by the involutivity of the geometric Fourier
transform. [

4.1.7 Corollary. — Let & be a holonomic F- @9 Q( o0)-module such that 0 is the only singu-
larity, and it is regular at infinity (i.e. irr(&), ) = 0) Then the geometric Fourier tmnsform &’
is not singular except for 0, we have sq(&') =0, ag/(&') = (&), and the slope at oo’ is strictly
less than 1.

On loc. cit., p # 2 is assumed extensively. However, the proof of Lemma 1.5 works also for p = 2 without any
change.
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Proof. By (ii) of Proposition L6 and the hypothesis that & is regular at oo, we get for s’ #
0/ OO/
rs(8') = (&),
which shows that mg = 0 for s’ # 0/, 00’ by Lemma LT.4l Thus &” is not singular except for 0/
and oo’
Now, by (ii’) of the proposition, we get for s # 0, 0o

(4.1.7.1) k(€ |po)1) = irr((E' | )1 © L (s - 7)) = 0.

Suppose (&”|p..)1 # 0. Then by Lemma (ii), there exists s # 0 such that the irregularity
of (&' |y )1 @ ZL(s-a')]y., is less than r((&”|,.. )1), which contradicts with (ZLIZI]). This shows
that (&'}, )1 = 0. Now, we get

(4.1.7.2) ag (&) — sp (&) = (&) —ro (&)

= — (rk(((f\noo)[og[) - irr((cf’\noo)[o,l[))
= k(&) = (&),

where the second equality holds by (iii) and the third by the assumption that & is regular at
infinity. Combining with (i’), we get

(&) = (&) + 50(&") + k(6" 1,00) = TT((E [0 )11,00])-
Thus,
50/ (6") = 1 ((&” oo 1,000) = TR((E” [oe )11,00]) = O

On the other hand, we have sy (&’) < 0 by definition. This shows that sy (&”) = 0, and
("o 1,00[ = 0. Thus ag (&") = (&) by ELL2). [ |

4.2. Regular stationary phase formula

4.2.1. Let .# be a holonomic F-@;,Q(oo)—module. Let s € o/ be a singular point of .Z.
Recall the notation of Z4.1] and Definition 2.4.21 We have a canonical homomorphism

AT M)y = My, — T (8] @ ) 2 7 T(FED (1)),

where the second homomorphism sends a®m (o € Ry, and m € I'(Z,.4)) to a(1@m). The
first isomorphism is the isomorphism by Noot-Huyghe ([B.2.5.1]), and the second one is that of
Lemma 2.4.4] We see easily that this homomorphism is compatible with the connections. Since
the source is a free differential R-module, we get a canonical homomorphism of differential
R-modules

a5z AT n( M)y — 7 F (M)

by paragraph 2.1.2]

4.2.2 Theorem (Regular stationary phase). — Let .# be a holonomic F—.@;z@(oo)—module
whose slope at infinity is less than or equal to 1. Let S be the set of singular points of M in <f .
Then the canonical homomorphism

(422.1) (as)ses: AN (Fn( M)y, — P FL) ()

seS

18 an isomorphism.
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Proof. First of all, we will reduce to the case where S consists of rational points. There exists an
unramified Galois extension L of K such that S consists of kj-rational points where k;, denotes
the residue field of L as usual. Note that

My, @K L2 (M @k D)y, TN M) 0k LS @ FE (i 0k L),

s's

where the direct sum in the second isomorphism runs over the set of closed points of A}%L which
map to s. Indeed, the first isomorphism follows since the cohomological operators used in the
definition of geometric Fourier transform are compatible with base change. The second isomor-
phism follows from Lemma 249 and 2248l Since the left hand sides of these two isomorphisms
have the action of G := Gal(L/K), we define a G-action on the right hands sides by trans-
port of structure. Note that the G-invariant parts are isomorphic to ya |y, and F (s’ool)(/// )
respectively. By definition, the following diagram is commutative

as

M, 7 F 60 ()

| |

(M @K L)y —ggmr B TH 7 (M ¢ L),

where 77 denotes 7/ over L. Thus, if the theorem holds for .# ®g L, then it also holds for .#
by taking G-invariant parts, and the claim follows. From now on, we assume that S consists of
rational points.

Now, we will see that ay is surjective for any s € S. By the exactness of Fourier transforms
and local Fourier transforms (cf. Lemma and (B2.5.1]), it suffices to show the claim when
# is monogenerated. Suppose it is generated by mg € T'(Z,.#). Let N be a differential
Ay ([r, 1[)-module, where ¢’ := 1/2’, satisfying the following:

1. Rt QN = /Z/\|%O, where Roor := Ro_,;

2. there exists an element m{ € N which is mapped to 1 ® mg in ya .., by the canonical

injective homomorphism N — .7 |, .

Now, let .#(™) be a stable coherent @g@(oo)—module generated by a single element m( in
[(2,.#™) such that 9; g(00) ® A (m) > gz and 1® m} is sent to mq via this isomorphism.
Then there exists an integer m’ such that m’ > m, w,,y > r and a is induced by a homomorphism
A([wmr, 1)) @ N — Fregmn (™) sending 1@ mj, to 1® (mf)". To see that this is surjective,
it suffices to show that the canonical homomorphism

0 : A([wm/7 W }) [} N N T/* é’\as(m/’m//) (%)

is surjective for any m” > m’. We have the local coordinate y; = x — s around s. By the choice
of N, 1® (y?myg)" is also contained in §(N) for any positive integer n. Indeed, we have
1® (yimf)" = (=7 10y — )" - (1 ® (m{)") = 0((x 29y — s)™ - my).

Thus, the surjectivity follows from Lemma
Let M be an object of F-Hol(.%), and let .# be the canonical extension of M at 0. Then

the homomorphism -
‘%0’7700/ N T/*(I)(O,oo/) (M)

is surjective by the argument above. By corollary LT.7] the greatest slope of /‘//70’%0/ is strictly
less than 1. The surjectivity of the homomorphism implies the following;:
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(*) The greatest slope of <I>(07°°l)(/\/l) is strictly less than 1 for any object M in
F-Hol(.¥).

For s € S, we know that
F N ) = 8O (1l |5,) © L(s)
by Lemma 2491 Thus we get the following:
The greatest slope of .Z(5)(_#) is equal to 1 for s € S\ {0}.
We put M’ := ////\|,700,. For a k-rational point s in 1&1, we define
M = L(s) @ (L(—s) @ M')g1 € M.

By definition, M'® is a direct factor of M’, and in particular, there exists a canonical projection
ps: M — M’S. Take two distinct points s,t € S, and consider the canonical homomorphism

L(—s) @ Mt 192%, £(_ gy FE (g) = 30 (1, 4)3.).

Since L(—s) @ M" = L(—s+1) @ (L(—t) @ .A4")[,1], we get that the source is purely of slope 1.
We know that the target has the greatest slope strictly less than 1 by (*). This shows that the
homomorphism is 0. Thus the homomorphism

M s M 22y 7 F 60N (L)

is 0 if t # s.

Let s be a point in S and let Sg := S\ {s}. By using the same argument, the canonical
homomorphism )_,.g M — M P2 M’$ is 0. This is showing that > oteg, MTOM® =0 in
M’ and thus, the canonical homomorphism @, g M — M’ is injective.

Now, since M’ — .Z () (L) is surjective, the homomorphism

L(—s) @M — L(—s) @ FE () = 0 (x)s,)

is also surjective. Since the target has slope < 1, the homomorphism
(L(—s) @ M) 1| = L(—s) @ F) ()
is surjective, and we deduce that the composition
Be: M 5 M 255 F (1),
is surjective as well. Thus, we get that the canonical homomorphism
(4.2.2.2) P s — M {ad), P 7= (),
seS seS

is also surjective and equal to @, g Bs. This leads us to the following inequalities:

rk(M') =) " k(M) > ) rk(F &) () = rk(M),

s€S s€S

where the last equation holds by Corollary combined with Proposition (i) using
the assumption that the greatest slope of .# at infinity is less than or equal to 1. Since a
surjection of differential R-modules with the same ranks is an isomorphism, we get that (L.2.2.2])
is an isomorphism. Since an injection of differential R-modules with the same ranks is an
isomorphism, we have @, g M’ = M’, and combining these, we obtain the theorem. [ |
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4.2.3 Corollary. — Let M be a holonomic F-P o-module. Then the local Fourier trans-

form ®©:2) (M) coincides with FO' (M) of Crew 8.5.1]. In particular, the local Fourier
transform is a free R-module.

Proof. Apply the stationary phase formula to the canonical extension of M. [ |

4.2.4 Corollary. — For any holonomic F-2% o-module M, the slope of 09 (M) is strictly
less than 1. Moreover, when M is an R-module, we have

rk(® (j, M)) = k(@) (M) = rk(M) + irr(M),
irr (0 (j, M)) = irr(®O2) (M) = irr(M),

using the cohomological functors of B.1.91

Proof. Let us see the first claim. Let .# be the canonical extension of 7j(M). By stationary

phase formula, it suffices to see that the slope of ya |y, is strictly less than 1. For this, apply

Corollary 1.7

Let us prove the latter claim. The first equalities hold by Lemma [3.1.10] and its remark. Let
us calculate the rank and irregularity of <I>(0’°°l)(j+./\/l). Let .4 be the canonical extension of
75 (j+M). For the rank, apply Corollary 1.3l It remains to calculate the irregularity. We put
M' = .M . By Proposition 16 (i) and (iil’), we get

r( M) = ag(M) = (M) — irr(M |p,) — ro(A ),
ro(M) =r(MH)+ rk(///\noo,) — irr(///’]noo,).

Since rk(4"|,_,) = —r(.#"), we get irr(A|,,) = irr(.4"],_,). Thus the corollary follows. W

5. Frobenius structures

In this section, we endow the local Fourier transform with Frobenius structure. We define the
Frobenius structure using that of geometric Fourier transform. In the first subsection, we show
that, with this Frobenius structure, the stationary phase theorem is compatible with Frobenius
structures. In the second subsection, we explicitly describe this Frobenius structure in terms of
differential operators.

Throughout this section, we continuously use the assumptions and notation of para-

graph 22411

5.1. Frobenius structures on local Fourier transforms

5.1.1 Definition. — For a coherent 9} Q(oo)—module A, recall that we have the canonical

isomorphism Faive () =2 ATy (M) (cf. BZET)). Since the geometric Fourier transform
is defined by cohomological operators, this functor commutes with Frobenius pull-backs. By

transporting, for a coherent @;(D Q—module ', we have a canonical isomorphism

(S F*yl(tg;naivo,w(%/)) :> tg;naivoﬂr(Fpk@'///)-

When # is a coherent I -9;7Q(oo)-module, we define a Frobenius structure on Fpaive (A4 )
using this isomorphism.
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5.1.2 Lemma. — There exists an operator Y, € 7} Q(oo’) such that the following condition

holds: let A be any coherent ‘@;(1),(@

For any m € D(2W, #), we have

(00)-module (which may not possess Frobenius structure).

ex(l@m)="Tr Iam.

Moreover, the operator Y. is compatible with base changes. We omit w in the notation Y, if
there is nothing to be confused. Note that Y is not unique in general.

Proof. Let us take an operator Y, such that

—

e, (1@l =" (1e1).
2,Q

The existence follows easily from the fact that the homomorphism 9;3, o(o”) = (@; Q(oo))A —

(F*@;(D Q(oo))A is surjective, in other words, 1® 1 is a generator of (F*@iﬂ(l) Q(oo))A over

@;], Q(oo’). For m € .#, let us denote by p: @;] Q(oo) — . the homomorphism sending 1 to
m. Then by the functoriality of geometric Fourier transform, we get the following commutative
diagram:

* F*ynaivc( ) *
F*(25,0) o(00))") P (")
E_@TJ/ €n
x oyt A * A
F T 000" —5 gy (A"
Thus the lemma follows. [ |

5.1.3 Definition. — Let M be a holonomic I-Z% j-module. Let s € A} (k). We denote by
A the canonical extension of o} M at s. Let

Py, > (M)

be the isomorphism given by the stationary phase theorem. Here we used abusively the notation
7/ and oo on & ® K. This isomorphism and €_; induce an isomorphism

s FH(@E (M) = &) (F* M),

We define the Frobenius structure on ®(©>)(M) by composing this isomorphism with the
isomorphism of functoriality ®&>)(F*M) =5 ®(°°)(M) induced by the Frobenius structure
of M.

5.1.4 Lemma. — Let .# be a holonomic F—@;Q(oo)—module. Let s be a k-rational point of

A,lf, and 7y be the translation isomorphism of &2 sending s to 0. Then we have an isomorphism
compatible with Frobenius structures

Fr(Voll) = Fr( M) @ L (5 - 2).

Proof. The proof is formally the same as that of [La2l 1.2.3.2] using the Kiinneth formula B.1.7]
so we leave the details to the reader. |

5.1.5 Lemma. — Let M be a holonomic F—.@j}l’(@-module, and s be a k-rational point of 1&,16
Then we get the following isomorphism compatible with Frobenius structures:

N (M) = 00 (M) @ L(s).
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Proof. Let .#, denotes the canonical extension of 77(M) at s. By the previous lemma, we get
that .F (v, ) @ L(s - x') =2 .F (My). By definition, the stationary phase isomorphism

F (ol = FO (i) = 7700 (M)

is compatible with the Frobenius structures. Tensoring with L£(s) to both sides, we get the

lemma. |
5.1.6 Proposition. — Let M be a holonomic F-2% o-module, and s € Al(k). Recall the
isomorphism

st FH (@) (M) =5 @) (F* M)
in Definition [ 1.3. Then for any m € M, we have

—

elom)=7(Y)-1@m.
Here, Y is the operator of Lemma B1.2]

Proof. Since Frobenius structures are compatible with base changes and Y, does not depend
on a base as well, we may suppose that s is a k-rational point by Lemma 2.4.8] From now on,
we assume that s := s is a rational point. Let M®" be the canonical extension of 7;M at s.
Then we define a homomorphism €pqean (the dotted arrow below) so that the following diagram
is commutative.

F*(j‘(s,oo’)(Mcan)) ~ F*(<1>(s,oo’) (M))
€ Aqcan le'ﬂ’s
v
rgf(s,oo’) (F*Mcan) ’;’ (p(s,oo’) (F*M)

Here the horizontal isomorphisms are induced by the canonical isomorphism M = M®"|, . For
any 2’ € T(2M M) we get

(5.1.6.1) epen(l®@ 7)) =7(Y) - 1@ 2

by Lemma Let N be a differential A(]r, 1[)-module with Frobenius structure such that

RN = whkx)’ and let .#(™) Dbe a stable @;?3) Q—module such that 9;(1) Q @ MM =~

M| 4y, We note that N — & (5:00) (M2 There exist an integer N and isomorphisms
~ N, m * ~ N h7 * m
A(fwn, 1) @ N = &GV ™), Alwyin 1) @ FN = &850 (F ™)

inducing the stationary phase isomorphisms. We note that the outer square of the diagram

F*.A([wN, lD ®_/\/ ~ F*éas(NvT) (%(m))(—) F*(y(s,oo’)(Mcan))

~ e(N) lEﬂcan
1

A(wn 4, 1[) @ F*N —— 55(N+h’T)(F*%(m))CT> y(s’w/)(F*Mcan)

is commutative. We de@e\the dotted arrow ¢V) so that the diagram is commutative, and we
get M (1@7) = 7/(T)-1® z for any z € .#™ by the injectivity and (TL6.1). We put ¢ = aob.
By changing m, we may take N = m.

Let z € M. We may assume that x € (9&8)” ® .#™ by increasing m if necessary. This
element can be seen as an element of @gs(g,m') ® 4™ with some integer m’ > m. By Remark

2275 (i), there exists a sequence {1 ® z;} in Im(.Z(™ — éz(vg’m/) @ A with z, € 4™
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which converges to = in & (g’m,) @ 4™ using the topology induced by the & (gm,)—module

S S
structure. Consider the topology induced by the finite K ﬂ(l){ﬁ}(mvm/)-module structure. By
Lemma [[L2.3] these topologies are equivalent, and we get that the same sequence converges to
x also in this topology. Since

F*(;(Es(g,m )(//(m)) ~ Kﬁ{{a}(m—l—h,m’—l—h) ®Kﬂ¢(1) (@) (mm) (;@\s(gvm )(%(m))

by definition, the sequence {1®(1®xy)} in F' *@i(g’ml) (™) converges to the element 1@z using

the K, {9} +hm'+h)_module topology. Since €M) is a homomorphism of finite K, {9} (m+hT)-
modules, it is in particular a continuous homomorphism of topological modules over the noethe-
rian Banach algebra K J?{{(‘9]»(“””'h’ﬂ. Since the topology is separated, we get

Mi1ez) = lim M1 e5;) = lim 7(0) - (1@ ;)"
=7/(7)- lim (1@ )N =7(0) - (1@x).
Now, we get
cns(197) = (V1) =c(r(T)1®2)") = (1)1 )"
and the proposition follows. |

5.1.7 Definition. — Let .# be a holonomic F—@i@ g(0c0)-module. Let s be a singularity of

M in of. Take a geometric point s € A} (k) sitting over s. We define the Frobenius structure
on .Z>) (L) by using the canonical isomorphism of Lemma 240

FEoD () = Reser (20 (ryl|5,)).

The Frobenius structure is well-defined since it does not depend on the choice of s by Proposition
0. 1.0

5.1.8 Theorem. — The regular stationary phase isomorphism ([{L221]) is compatible with
Frobenius structures.

Proof. To show this, it suffices to show that the following diagram is commutative.

F*‘%/Tﬁoo ~ @SES T/*F*Lo}‘(s,oo)(%)
A, — B ™" F )N (F* )

The left vertical arrow is defined by the Frobenius structure of geometric Fourier transform,
and the right vertical arrow by Definition B.1.71 To show that it is commutative, it suffices to
show the commutativity for 1 ® m € F*.# for any m € .4 . This follows from the description
of the vertical isomorphisms in terms of the operator Y given in Lemma and Proposition
0. 1.0 [ |

5.2. Explicit calculations of the Frobenius structures on Fourier transforms

To calculate the Frobenius structure of Fourier transforms concretely, the results of the last
subsection imply that all we need to do is to determine the differential operator Y. To calculate

this, it suffices to calculate the Frobenius isomorphism
@: (D0 o (00)") 5 (B2, o (00))"

concretely, which is the goal of this subsection.
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5.2.1. Recall the notation of Z.4.1] and consider the following diagram.
e@//

| T

P Fon , L@/

T xT

/@/\

@(1 @/(1

1( P

Here, M) means ® roR, and small letters z, y, 2/, ¢’ denotes the coordinate. The middle vertical
morphism Fgr is defined by sending y and ¢’ to 29 and 2’?. By the definition of the morphisms,
we note that the diagram is commutative.

To proceed, we will review the construction of the fundamental isomorphism

HNF (Dl o(00)) = (Tl g(00))"
of Noot-Huyghe (B:25.0]). First, consider the Spencer resolution [NHIl 4.2.1]:

Dlon o 2) & \ T )0 = Dhpn_y 9.0 2).

Here 1,5 denotes the relative tangent bundle of " over &. She showed that we can

calculate .7 (.@;,, o(00)) using this resolution, namely, there exists an isomorphism

f}\(@;’(@(oo)) = p;(@;u_@//’Q(Z) ® 9” Q(Z) (f T ®(99,, Q(Z) 9';,, Z) ® /\ ,79,,/9))
Then, she defined a homomorphism
(5.2.1.1) DALYy 0 2) D1, (2) (Grn B0 1 o(2) Dl o(2))) = (21, o (00))"

and showed that this factors through the geometric Fourier transform. Let us recall how (5.2.1.1])
is defined. We identify

(5.2.1.2) Dl ) Z) = w5 @ (On @ Dy o(2) @ wipn).

The homomorphism sends ((dz')Y ®1®1® (dz A d2')) @ (e ® P) to P where ¢ is the canonical
section of .7 ,, (cf. B2.1)). To verify that this defines a homomorphism, see 5.2.1 ete.].

Before starting the calculation, we introduce the Dwork operator. Let 2" be a smooth formal
scheme possessing a system of local coordinates {x1,...,24}. Assume there exists a lifting of
relative Frobenius 2" possessing a system of local coordinates {z/,...,2/,}, and lifting of the
relative Frobenius homomorphism 2~ — 2" sending # to z]. Then we put

=31 ) EHEE

1<i<d ¢a=1 k>0

in (42, @g)(@) If there is nothing to be confused, we denote H4 by H. We note that even
if ( € K, the operator is defined over K, and do not need to extend K to define this operator.
For the details, we refer to [Ga3].

By applying F7,, to (ZI.1]), we get the homomorphism

(2) @, 20 g 7!

* T
F,@’p* (9 (Z) ( 0 09//(1)’()( ) gp11(1) ,Q

T
2!V (1) Q )) - F*W’(@

)
//(1) ‘@(1)7(@ ’

where .,2”7513 on 2" denotes the base change of Zr - From the next paragraph, we will
calculate the Frobenius commutation homomorphism on the source of the homomorphism. For

this, we always use the identification (5.2.1.2]).
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5.2.2. In this paragraph, we calculate the canonical homomorphism of sheaves on &’
. * / T 1 T
¢' F@’p* (@t@/(lu_to]w(l)’@(z) ®@T§a//(1) Q(Z) (375,;2 ®(9 (Z) 9@//(1)7(@(2)))

Q(Z) (gw’u ®O:@,,’Q(Z) 9{2}//%97(@(2) (024 F;z‘@;]’(@(oo))

2'"(1) g

— p;gl /HQ//’Q(Z) ®QT

"
UK

In this paragraph, for simplicity, we denote .@;’Q(Z), 9;(—9”,Q(Z) etc. by Do, Dp_ o ete.,
and we identify sheaves and its global sections.

In the following, we will compute ¢(ag) where ag := 1® ((dy)V ®1@1® (dyAdy')) @ (e® 1)
is a global section of the source of ¢. First, we get an isomorphism

* 1 ~ * 1
Fp/m (.@'@/(1”_@//(1) ®9§a//(1) (gﬂg’g ®(99N(1) 9@//(1) )) — .@'@u_@// ®.@9// F@// (3757/3 ®09//(1) 9@//(1) ) .

By [Ab3, Proposition 2.5], the element g is sent to
ar = ((d2')Y ®@ 1@ Ha'~7Y @ (de A da')) @ 297127 e @ 1).
Now, we get an isomorphism

D1 @ Fopn (fﬂ ®o D)) = Doyt @ s (L @0 11 Fin Dopnry)

52,//(1)

using the Frobenius structure of .2 ,. This Frobenius structure F*.Z , = Zrusends 1 ® e
to exp(r((zz') — (z2')?)) - e as written in [BB] (2.12.1)]1%. Using this, a; is sent by this
isomorphism to

= ((d:z:’,)v ®1® H~@ D g (dze N d:n',)) ® :z:q_lznlq_l(exp(ﬂ((:nznl) —(z2")?)) - e®(1® 1))

Then we get a homomorphism

D7 @9 sy (Lr R0 sy Fipn Dipnty) = Dt eom @51, (Lot @0 goir Fipnt Dgony 1))
which sends a to ag = A® 29712/ (E® (1® 1 ® 1)). Then we have an isomorphism
D1 97D 1y (L @0 g Fipnt Digony s 1)) = Dt e 9@ 1y (L y R0 3y D 9 QF 5 D),

which sends a3 to ay == A® 27 2" HE® (1®1) ® (1®1)). Summing up, we have that the
homomorphism ¢ sends

1® ((d2,)Y ®1®1® (dze Ada,)) @ (e®1) = Az 2T (Fe(1e1)® (1®1)).

5.2.3. Let us finish the calculation of ®. There exists the following commutative diagram

B

1 T
p;@gzu_gzu ®@ng‘” ("%777/1 ®ng// 9@”—%@) (9;](00))/\
al ‘/6
PPy Bt (Lo ®0 5 Doy 0 @ F5 D 1 (20)) — (F@‘@;z(l) (00))",

where we have omitted Q in subscripts and (Z) to save space. The homomorphisms « and § are
the canonical homomorphisms induced by the homomorphism _@;z@(oo) — F ;,@;,(1)’@(00), B

(19 Note that in loc. cit., our 7 is equal to —m in their notation, and this is why we get (zz') — (zz')? instead of
(zx')? — (z2').
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is nothing but (5ZTI.T]), and v is the homomorphism of Huyghe (8:25.1]). By the computation
of the last paragraph, we have
(15 T) = (o)

Since these sheaves are 9;,,, Q(oo’ )-modules, we identify the sheaves with their global sections.
Since a(A® 291" (E® (1®1))) = au, all we have to calculate is (60 8)(A®@ z7 12/ (E®
(1®1))). Let

exp(7(t — t?)) Z ant™.
n>0

Then we get
ﬁ(((daz')v ®1® He'~Y @ (da A dr')) ® 2771217 (exp(n((za) — (z2)P)) e ® (1 ® 1)))

= 5(((dx/)v ®1® He~@ D g (dx A dx/)) ® (Z an(xx/)"xq_lx/q_l) (e 21 1)))

n>0
5(2(( WVole (@, Ha' ") @ (dr Ada')) @ (e® (1® xnxq—l))>
n>0
= ( =1y o= Zanx/n) . ( dm/)\/ 11 (dl’ /\da:’)) ® (€® (1 ®x"wq_1)))
n>0
( 19— 1Hm Zanxm) x n.q— 1)

n>0

—)

)T

Summing up, we get the following theorem.

:( 9L ff o/ Za,@’”(

n>0

5.2.4 Theorem. — Let .# be a coherent 9 module. We write

](1) Q( )

exp(m(t —t7)) Z ant”
n>0

with a, € K. The canonical isomorphism ®: Fl, (M) = (F2 )" can be described as follows:
for any m € T(P2W ), we have
—'\n/—9\q-1 A
=) () aem

P(l@m)= (/9" Hypr - x’_(q_l))t . Z anxm(
n>0

6. A key exact sequence

To show Laumon’s formulas, one of the key point was to use the exact sequence appearing in
the proof of 3.4.2]. This exact sequence was deduced from an exact sequence connecting
nearby cycles and vanishing cycles. Since our definition of local Fourier transforms does not use
vanishing cycles, we need some arguments to acquire an analogous exact sequence, which is the
main goal of this section.

6.1. Commutation of Frobenius

In this subsection, we show a commutativity result of Frobenius pull-back and microlocalization.
This result is used to define a Frobenius structure on microlocalizations defined in the next
subsection.
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6.1.1. Let 2 be an affine formal curve over R. We consider the situation in paragraph B.1.11
We moreover suppose that 2" and .2 possess a local coordinate denoted by z and 2’ respectively,
and that the relative Frobenius homomorphism 2" — 2" sends z’ to z?. For any smooth formal
scheme, we can take such z and z’ locally. We denote by d and @' the differential operators
corresponding to x and z’ respectively. We denote by X; and X! the reduction of 2" and 2"
over R; as usual.

Lemma. — Let ¢ be a non-negative integer. Let ®: .@;TJF}L) — F*@;T) be the canonical
homomorphism of Berthelot [Be6l, 2.5.2.3]. Then there exists a positive integer N; such that

(6111) (I)(a<lNipm+h>(7n+h)) =1® a’(lNip’”)(m)
for any positive integer 1, and &'NiP")m) s in the center of 9("7).

Proof. Note that for any i, there exists an integer a such that for any positive integer [, the
operator 8™ )m) is in the center of .@;?. We also note that 8<lpm/ﬂ>(’n’) = (8<pm/ﬂ>("“>)l
(mod w’) for any integers m’ > 0, [ > 0 and j > 0.

We use the induction on i. For i = 0, the statement is [Be6, 2.2.4]. Suppose that the
statement is true for ¢ = k. Assume ¢ = k + 1. Then there exists an integer N divisible
by p*t! Nj, such that OWNP" M) mtm) s contained in the center of .@)((T;irlh). This shows that

(8<Npm+h>(m+h))l — JUNP"™ ) i) iy .@)(?I::h) for any positive integer [. By assumption, we may
write
PO mim) =1 @ NP 4 k1N @ oD
1

in @;Zil, where f; € OX;QH' For any integer j > 0, we get
(6.1.1.2) NP Memin (1@ (NP ) 4 jk LN f, @ o @ (NPT o )i
— (1 ® &'{NP™) (m) (3/<Npm>(m> )j + okt GZ: fa® (@) m) (a/(Npm>(m) )j)+
a J S fy @ @ (@ NP )

=1® (8/<Npm>(m) )j+1 + (] + 1)wk+1 Z fa ® 8/<a)(m) (8/<Npm>(m) )j,

where - in the first line means the left action of 9§<T+h) on F* @)((nf). Thus, we get

m+h>

SOV mim) = u (G em )Pl (1@ N MY @ 9/
= (1@ (@M )P 4 pF Tty " f, @ o'leom (/NP P 1Y

a
{(pND™)(,
:U®8<p p >(n)’

where u,u',v are some invertible elements in Ryyq, and v = 1 (mod wk“). For the second

equality, we used (GLL2) (p — 1)-times. Since vP» = 1 (mod w**2), by taking Ny, to be p?N,
the equality (G holds for i = k + 1, and the lemma follows. [ |
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6.1.2. We keep the notation. Let i be a non-negative integer. First, let us construct a canonical
homomorphism

m-+h % o(m
(6.1.2.1) e 5 F (gg(q)

compatible with ®, where F* denotes 7T_1(9X1.®7T71(9X,_. Let N be the integer N; in Lemma

Let S,,.n be the multiplicative system of .@)(;imrh) generated by AN ) mim) and S,
be that of 9)(?7) generated by & (Np™) (m), which is also contained in the center of .@)(ZL). For a
(non-commutative) ring A, we denote by A[(] the ring of polynomials in the variable ¢ such
that ¢ is in the center. We know that S;bih@)(gﬁh) = 9)((":+h) €]/ (@NP" et ¢ — 1). Define a
9§T+h) [¢]-module structure on F*S;!1 9)(?7) by putting

((f® a’(i>(m)) =f® D m) §{=NP™)(m) |

This structure defines a homomorphism 9§<T+h) [(] = F*S. _19)(;?) of left 9§<T+h) [¢(]-modules by

m
sending 1 to 1 ® 1. Since O™ )y 1® 5'<_N”m>(m)) = 1® 1, the homomorphism factors

through 9§$+h) (] — S;Lihgggﬁh), and defines a well-defined homomorphism

_ m-+h * o— m
a: Sl 2 = FrS L o

compatible with ® and sending NP ) min) 1o §NP™)m) | For an integer k, we denote by

(F*STQIQECT))k =110y, Rr-10,, (S_lgécnf))k. By the choice of local coordinates (cf. G.IT]),

m

a(8<1>(7”+h>) = qz? ! @ &Vem) . This implies that, for any integer k, we get
_ m+h * Q— m
(ka2 ) € (F Sm19§;))[kp*h}+zvpm+h-

Thus by taking the completion with respect to the filtration by order, « induces (6.1.2.T]).
Let m’ > m be an integer. The homomorphism (6.I.21)) induces a canonical homomorphism

6 @ g I - FrE,

) (m-+h)

is flat over 7y, we get that the canonical

homomorphism induced by the injective homomorphism wé‘ﬁ?ufh) — é")((T,Jrh),

This is an isomorphism. Indeed, since F *9("{1

/ h « / h «
W(gﬁ}(gb +h) ®@§gtl+h) F @;}1) — éa)(gb +h) ®@§{n}+h) F 9;7;)

. . "th -~ "th . . .
is injective. Since wéa)gm ) R _(m+h) F*@;?,l) = é")((m ) & _(m+h) F*@;n,l) is an isomorphism,
i @Xi i i—1 -@XFl i—1

we are reduced to proving the claim for ¢ = 0 by induction. In this case the verification is
straightforward, and left to the reader.
Since Oy, is free of rank g over OXQ’ F* commutes with taking inverse limit over i. Thus

by taking the inverse limit, we get a homomorphism W,,: (;(;gn o, F*gg}) For an integer
m’ > m, this induces a canonical homomorphism

Bt B 6 PG 5 PE.

This is an isomorphism since both sides are complete with respect to the p-adic filtrations and
its reduction over R; is an isomorphism for any i.
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6.1.3. We continuously use the same notation. Let m’ > m be integers. We will first define

a homomorphism c;“’\gﬁh’murh) — F*gg}’m/) compatible with ¥,, and ¥,,,. Let & be either

5 (m+h S(m+h,m/+h . S(m+h,m/ +h
2(%”4' ) or é"gng' AR considered as a subgroup of éigmr mith),

b > a, we consider @5;”’) as a subring of g(;) or gg) using the canonical inclusions. Then we

claim that We(&) C F*éﬁggf’m/) where o is m or m/, and ¥,,,|¢ = V,,/|s. For & = @(%mrh)’ the

claim is nothing but the compatibility of W, and ®. Let us see the claim for & = & JS;” SF hum+h) By

For non-negative integers

definition, we get \I’m(8<_kpm >(7”’“1)) = \Ifm/(8<_kpm ><m’+h)) for large enough integer k, and thus
\Ifm(8<_”><’”’+h>) = \Ifm/(8<_">(m’+h)) holds for any positive integer n. By a standard continuity
argument, we get the claim.

Since éﬁ%mrh’m ) s equal to 950? +h) + é‘é;?;h’m ) in éag”rh), we get the desired homo-
morphism. Now we get the following.

Lemma. — The canonical homomorphism
(6131) é/iggll—i_h’m”—i_h) ®@(m+h) F*@%) — F*(;(;gnlll7m”)
X

s an isomorphism.

)

Proof. Since F* @%) is locally projective over @gﬁh , the canonical homomorphism

A(ﬂj’)

A~ / ],L7 " h * ~ ~ / h * ~ ~ *
é&gﬂ—i_ m' + )®_/@\(g’{’?+h) F g(ml) _) ggﬂ—i- )®_/@\(g?+h) r g(ml) N F gﬂ” 5

is injective. Thus we get the injectivity of (6.L3.1]). Let us see the surjectivity. Since Zm) =

o~ ~

gg}/’m”)/(é"gf,’m”))_l, it suffices to show that the image of ([G.I3.0]) contains (F*gg}:@m”))o.
However, this follows from the fact that (F *é"g} @m ))0 = (F*éig;} (5)0, and the surjectivity of

the homomorphism £,,. |
6.1.4 Lemma. — Let .# be a coherent é(fn,)(@—module. Then there exists a canonical isomor-
phism

EY Q@ F M — FY () @ M).
Proof. Since tensor product is right exact and F* is exact, it suffices to prove the lemma for
M = .@(m})Q by the coherence of 9(@(@. Since inductive limit commutes with tensor product,
it suffices to see that the homomorphism & g” gh’ﬂ ®F *.@(m}?Q — & L/S;?/QP is an isomorphism.

Since F *@%ﬁ)@ is locally projective over @gah), this claim follows from Lemma [6.1.3] above by
taking the inverse limit over m”, and we conclude the proof. |

6.1.5 Remark. — The construction does not depend on the choice of x and z’, and Lemma
6.1.4] holds for any smooth formal curve .2°. Since z’ is determined uniquely when z is deter-
mined, it suffices to see that the construction only depends on x, whose verification is left to the
reader.

6.2. An exact sequence

In this subsection, we construct a key exact sequence. We consider the situation in paragraph
241l First, we use a result of the previous subsection in the following definition.
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6.2.1 Definition. — Let .# be a holonomic F—.@;z o(00)-module, and consider éaOTQ ® M =

X cf. Notation . 1s module is naturally a 27, ,-module by Corollary
éa}g@ M), (cf. N ion [[2113). Thi dule i 11 23/%,@ dule by Coroll
2241 Now, we get the following isomorphism

f ~ ., ot N

where the first isomorphism is induced by the Frobenius structure ®: .# = F*.#, and the
second by Lemma This defines a Frobenius structure on @‘"J 0 ® A . We denote this
F-9% o-module by p(.4).

6.2.2 Lemma. — Let .# be a holonomic F—.@;] g(00)-module. Then the F'-Z*"-module ,u(////\)
only depends on M|y, .

Proof. First, we note here that as modules, we have

My =T GO0y (M.

3};’@(00)
Since .# possesses a Frobenius structure, we know that .# is a coherent 9;,, Q—module. Thus,

we get

7 0,Q ®_@1 M @af;’Q(O) ®_@1%’Q(OO) M

by [Crdl Theorem 4.6]. We can check that there exists a ring homomorphism 9;‘007@(0) —

~

(o, 5;,7(@) extending the ring isomorphism of the naive Fourier transform ¢: I'(Z, @;@(oo)) —
e, .@;},’Q(oo’)). This gives an injection of rings

'+ 77, 00) = EF o

Thus

—

72 T
N(% ) (b@yoh(@ ®_@;2,7Q(00) M= éaygh(@ ®@T9/’Q(OO) (@@/7(@(00) ®L,@T92,’Q(oo) %)

jad

an
= éoyol’(@ ®L/’@;}wy(@(0) %|7700‘

To see that it is compatible with Frobenius isomorphisms, it suffices to apply Proposition (.1.061
|

6.2.3. We use the notation of paragraph 2.4.1l Let M be a holonomic F-2% module Let us
define an LF-topology on &*" @ M. Let .# be the canonical extension of M at 0. By Corollary
224 we know that

EMQM=E, @M

Let .#(™ be a stable coherent Qyé—module such that 21%@ @ .#™ = 4. For m' > m,
)

since E( .Q is a Fréchet-Stein algebra, any finitely presented module becomes a Fréchet space.
By taking m/ to be suﬂi(nently large, we may suppose that E( ’T) ® 4™ is finite free over
K {0}™"1) by Corollary B There exist two topologies on E( ’T) ® #™); the Fréchet
topology induced from E( )

finite free K, {8}(™"1) module structure denoted by .7”. Since (.# ™), .7) becomes a topological
K Jy{(‘)} m’1) module as well, we get that .7 and .7’ are equivalent by the open mapping theorem.

-module structure denoted by .7, and topology induced from the

Now, we put on Ef of Q®/// the inductive limit topology. By the observation above, the inductive
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limit topology coincides with the R = li_rr;m, K {0} D-module topology (cf. Lemma [[3.0).
Since R is an LF-space and the module is finite free over R, we get that the inductive limit-
topology is separated and Ejzf’@ ® # becomes an LF-space. Thus this defines an LF-space
structure on &*" ® M. By using Remark (ii), we note here that this is also a topological
2*-module. Thus, if £*" ® M is finite over Z*", this LF-space topology coincides with the
2**-module topology by the open mapping theorem.

6.2.4 Lemma. — Recall the notation of B.1.9. Assume that ju(.#) is a holonomic F-Z%' -
module. Then there exists a canonical isomorphism

(M |s,) = D(u(A)).

Proof. Let N be a holonomic 2*"-module such that M := &** @ N is also a holonomic F-22"-
module. First, we will show that & @ gan M =2 M. Let

a:M—)@pan®@anM7 B:gan(@_@anM—)M’

the homomorphisms mapping m — 1 ® m and P ® m — Pm respectively. Obviously, we get
B oa =id. It suffices to show that « is surjective. Let .45 and .#; be the canonical extensions
of N and M. We get

M=E, o,  ECMEE, @ ..

Using paragraph [6.2.3] we endow these with the LF-space topologies (or equivalently the Z"-
module topologies). Since these are equipped with 2*"-module topologies and « is Z*"-linear,
« is continuous with these topologies (cf. [BGR], 3.7.3/2]). To see the surjectivity of «, it suffices
to show that it is a homomorphism of E;’Q—modules. Since for 97! € E;@, we get that
a(0~'m) = 07! ® m. This shows that « is linear with respect to the subring £ generated
by Dl{@ and 0~!. Note that E is dense in E;Q Since the target of « is an LF-space, it is
separated, and we get the claim.

Now, since the category F-Hol(.#) is abelian by [Crdl 7.4], we define F'-2*"-module K, C by
the following exact sequence of F-Z?"-modules:

0K — Als, = (M) —C—0.

Here the middle homomorphism is induced by the scalar extension of the identity map on ..
By the definition of Frobenius structures (cf. [62.1]), this homomorphism is a homomorphism of
modules with Frobenius structures. Take &£*'®gan, and we get an exact sequence by Remark
2.4.3] and the claim above:

028K = u(MH) — () — " 2C — 0.

This shows that & @ K = & @ C = 0. Let N be a holonomic F-2*-module such that
& @ N = 0. Let N be the canonical extension, we have

Elg N = £ @ N =0,

This shows that there are no singularities for A/ at 0, so that A is a convergent isocrystal around
0. In particular, we get an isomorphism N = (O)®" of differential modules for some integer
n (note that in the isomorphism, we are forgetting the Frobenius structures). Applying this
observation to K and C, we get that these are direct sums of trivial modules. Since ®(O*") =0
and the functor ® is exact, we finish the proof. |
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6.2.5. Let .# be a holonomic (F—)@;Z g(00)-module. We define .# | := Homy(R., 4 |y..)-
When .# possesses a Frobenius structure, this is a K-vector space with Frobenius structure.
There exists a canonical homomorphism

(6.2.5.1) R @k Mlsy = Ml

This homomorphism is injective, and compatible with Frobenius structures if they have the
structures. When this injection is an isomorphism, .# is said to be unramified at infinity. This
is equivalent to saying that .#|, is a trivial differential module.

Lemma. — Let .# be a holonomic F—_@Lz@(oo)—module unramified at infinity. Then u(%\)
is a holonomic F'-2*" -module.

o~

Proof. Since pu(.# ) depends only on .|, and the claim does not depend on the Frobenius
structure by Lemma 1.3, we may suppose that .# is isomorphic to O» g(c0)®" where n =

rk(.#). In this case, we know that .# is equal to iy (K®") by Proposition B2l Now,
iy + K| = 9};, o/ (@), and we may check directly that &5 /65" - 2’ is generated over Z
by &~!. Thus the claim follows using Lemma [2.1.3] once again. [

6.2.6 Lemma. — Let .# be a holonomic F—_@;Q(oo)—module which is unramified ot infinity.
Then we have e
O(A |s,) = (K" @ M|, ) (1)

o~

Proof. By Lemma 625 we get that p(.# ) is finite over 3. Thus by Lemma B.24] it

o~

suffices to calculate (IJ(/L(///Z\ )). Since p(.# ) depends only on .Z|,. ., we may assume that
M= M|s.. 2k Oz (o). Indeed, its R-module around oo is isomorphic to .Z|,. as differential
R-modules with Frobenius structures using the isomorphism (G22Z5.1]). In this case, we may use
Proposition B.2.7] to get that .

M= vy 4 (M55, ) (1)

Now, using Proposition [6.2.4] again, it suffices to calculate <I>(////\ |, ), which is nothing but what
we stated, and concludes the proof. [ |

—

6.2.7 Remark. — We believe that u(.# ) is a holonomic F-2*-module even when .# is
not unramified at infinity, and ,u(////\ ) is closely related to the (oo,0’) local Fourier transform
of Laumon. However, we do not need this generality in this paper, and we do not go into this
problem further.

6.2.8 Proposition. — Let .# be a holonomic F—.@;’Q(oo)-module which is an overconvergent
isocrystal on a dense open subscheme U of A}, and assume that it is unramified at infinity. We
denote by j: (2, PL\U) — (2,{cc}) the canonical morphism of couples. Then there exists the
following exact sequence of Deligne modules:

(6.2.8.1)

0 — H, (U, M) = W(l|5,)(~2) = (K" @i M |5 )(~1) = H2, (Ugcur, M) — 0.

rig,c rig,c

Here, by abuse of language, we denoted Hriig’c(U, sp*(A)) ® K™ by H!
J1j T M using the cohomological functors of B.14.

(UKur,%), and %, =

ig,c

Proof. By ([2.I1.6.1)), there is the following exact sequence.

0 — Homg: (DA |s,,, Ou) — V(DA|s,,) — W(DA|s,) — Extl (DA|s,, Ofu) — 0.
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Consider the following cartesian diagram.

(Z0,{o0}) —— (2", 2)

o o

{07} Y (P {x'})
By [Cr3, Theorem 2.2], we get
EXtyf@T (D/%\/|SO/7O?(I'1ur) = }IZ 120, (DD%/) Kur >~ }IZ 1Z0, (%/) Kur

for any i. We get the following calculation:

®

i () -2 i 0l 2o @ ot D)3 - gy 1 (4 25 @ pott))[-2]

T®> H'qoug (W' Zeep' ")) (=2)[-2) @ H'qoug (n* Zeop™ a))[2]

O gt i L at)-12) -2 Hign (O, (o0)Enat )1

O, Higga O] -2 B2 0,0 (2)

rig,c
Here (@O follows from Huyghe’s theorems ([B.2.2.2]) and [B.25.1]), @ from the proper base change
theorem B.1.6] (3 from BIAHE @ from and Lemma B23 & from BILHME & from
a direct calculation, (@) from again, and from (BI83). For the calculation of

(I)(;//\’]SO,), it suffices to apply Lemma [6.2.6] and the fact that .Z'|s. = .#;_,. u

’500

7. The p-adic epsilon factors and product formula

In this section, we prove the product formula for p-adic epsilon factors and the determinant
formula relating the local epsilon factor to the local Fourier transform. We start in §7.11 by
defining the epsilon factors for holonomic modules over a formal disk, then we state the main
theorem (the product formula) in §7.21 Its proof takes the rest of this paper. We begin in 7.4l
by proving it for F-isocrystals with geometrically (globally) finite monodromy: this proof is
slightly more technical than the ¢-adic one and we need some generalities on scalars extension
in Tannakian categories, which we collect in §7.31 We finish the proof of the main theorem in
g7.0] where we give also the determinant formula.

7.1. Local constants for holonomic Z-modules

7.1.1. Let us fix some assumptions for this section. Let F be a finite subfield of k, p be
the number of elements of [F, so that F is the subfield of k fixed by the h-th absolute Frobenius
automorphism o. Let A be a finite extension of Q, with residue field IF and absolute ramification
index e. We put K := A @) W(k). It is a complete discrete valuation field with residue
field k and ramification index e. We denote by R its ring of integers. We endow K with the
endomorphism ox = idy ® 0. The subfield of K fixed by o is A. We say that ok is a Frobenius
of K of order h. Let vk denote the valuation of K normalized by vg (K*) = Z.

We assume (except for §7.3) that k is finite with ¢ = p/ elements, and that the order h of
the Frobenius o divides f, so that f = ah for an integer a. We will see later (cf. Remark [[.27])
that, in the proofs, it is not restrictive to assume h = f and so F = k and K = A.
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We choose an algebraic closure @p of K, and we denote by F its residue field. We choose
also a root 7 of the polynomial X~ + p and we assume 7 € A. We recall (cf. ZAT]) that the
choice of m determines a non-trivial additive character ¢, : F, — K*. By composing v, with
the trace map try p, : k — Fp, we get a non-trivial additive character k¥ — K™ that we denote
also by 5.

7.1.2. To fix notation, we review some results collected in [Mr]. See loc. cit. for more details.
We follow the notation and the assumptions of Z.1.4] and [L.T.Jl In particular . := Spf(A)
denotes a formal disk, 7o its geometric point, S = Spec(A/wA) its special fiber, s = Spec(k4)
the closed point, and 1 = Spec(K) the generic point of S. We put §:= Spec(F), and we choose
a geometric algebraic generic point 7. We identify (s, §) with Z, by sending any n € Z to F",
where F': 2 +— x79 is the geometric Frobenius in (s, ). Let us denote by v: m(n,7) — Z
the specialization homomorphism and by W (n,7) := v=1(Z) (resp. I,, := ker v) the Weil (resp.
inertia) subgroup.

Let Rep gur (WD(n, 1)) denote the category of Weil-Deligne representations: i.e. the category
of finite dimensional K" -vector spaces V endowed with an action p: W (n,7) — Autgur (V) and
a nilpotent endomorphism N: V — V, satisfying p(g)Np~'(g9) = ¢"9'N, for any g € W (n, 7).

On the other hand, p-adic monodromy theorem gives an equivalence of Tannakian categories
(nearby cycles

U(—1): F-Hol(ny) — Delgur(m1(n,7)).
For the twist (—1), see Let (V,p,N) € Delgu(m(n,7)) be a Deligne module. We can
endow V' with a linear action p: W(n,7) — Autgw (V) by putting p(g)(m) := g(¢™9) (m)), for
all m € V and g € W(n, 7). In this way we obtain a Weil-Deligne representation (V, p, N) and
we denote by

(7.1.2.1) Ly;: Delgur (m1(n,7)) — Repgeur (WD(n, 7))

this functor of “Frobenius linearization”. Since Weil-Deligne representations are linear, we
will often implicitly extend the scalars from K" to Q,. Composing the functors ¥(—1) and
L;, and extending the scalars to @p, we obtain a faithful exact ®-functor WD: F-Hol(nys) —

Rep@p(WD(n,ﬁ)) (cf. [Mrl, 3.4.4]).

7.1.3. Now, let us introduce local epsilon factors. Langlands [Lal] defined local epsilon factors
extending Tate’s definition for rank one case, and in [Del], Deligne simplified the construction
of the epsilon factors for Weil-Deligne representations. Deligne’s definition translates well to
free differential R »-modules with Frobenius structure F-Hol(n.), via the functor WD recalled
above. Here, we extend it from F-Hol(ny) to F-Hol(.¥) by dévissage.

We follow the notation and the assumptions of 2.1.4], B.1.9] [.T.1] and [.T.21 Let M be a
holonomic F° —QyQ—module, w € Q}C /i @ NON-Zero meromorphic 1-form, and p a Haar measure on

the additive group of I with values in K. We denote by ¢ (w): K — K" the additive character
given by a +— ¢ (Try/p, (Res(aw))) (cf. Remarque 3.1.3.6]). The next proposition allows
us to define the (local) epsilon factor of the triple (M, w, p).

Proposition. — There exists a unique map
Ent (Myw,p) = ex(Myw, ) € @;,

satisfying the following properties.

Dy [loc. cit., (3.2.18)] the functor ¥(—1) was denoted by S, the field of constants K by C, the category of free
differential modules over R by F-Isoc,, (7|C) or ®M (R ), and the field K = k(n) by K.
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1. For every exact sequence 0 - M’ — M — M" — 0 in F-Hol(.¥), we have

€7T(M7 W, :u) = €7T(Ml7 W, :u) : gﬂ(M”7 W, :u)

2. If M is punctual, i.e. M =i,V for some p-K-module V', then
57.-(M,(U,/.L) = detK(_F7 V(_l))_lv

where F = ¢® is the smallest linear power of the Frobenius ¢ of V' (cf. see [l for the
definition of the integer a).

3. If the canonical homomorphism jy jT M — M is an isomorphism, then

ex(M,w, 1) = o (5F M, Y (w), 1)1,
where €y is the local epsilon factor defined in [Mr, 3.4.4].
Proof. Tmmediate by applying the distinguished triangle (BL9.T]). [

In the following, we will always assume p(A/wA) = 1; to lighten the notation, we put
(M, w) := ex(M,w, ir). Moreover, for a differential R-module M with Frobenius structure, we
put £y 8(M,w) 1= go(M, Vr(w), 1) and e"8(M,w) 1= (M, ¥ (w), 1) using the notation of [Mt
3.4.4]. For a complex C of F —QQQ—modules with bounded holonomic cohomology, we put

e(C,w) = [[ e, w) =V
1€Z
7.1.4 Remark. — Let M be an object of F-Hol(n). We define ji. (M) := Im(j4M — jo M).
Then we get that .
Eng(Mv w) = Eﬂ(j!+(M)7w)_17
where we used the notation of 3.4.4] in the left hand side of the equality. This follows from
Lemma BT.T0 and [Mr] (3.4.5.4)].

7.2. Statement of the main result

7.2.1. Let us begin by fixing notation and definitions of global objects. We follow the notation
and assumptions of JT.T.T]1 Let X be a (smooth) curve over k. We denote by C' the number of
connected components of X ®;F and by g the genus of any of them. Let nx be the generic point
of X, and we choose a geometric point 77x over nx. We denote by | X| the set of closed points of
X. For any = € | X/, let m, be the maximal ideal of Ox ,, k; its residue field, i,: Speck, — X
the canonical morphism and K, := K Q) W(ks). Let (/Q\X,w be the completion of Ox , for
the mg-adic topology, K, the field of fractions of @X,w, N = Spec(K;) the generic point of
Sy := Spec (/O\X,w, 7, (resp. &) a geometric point over 7, (resp. z). Let us denote by k(X) the
field of functions of X and by Q}C( X)/k the module of meromorphic differential 1-forms on X.
For every non-zero w € Qllc(X)/k and z € |X]|, we denote by w, € Qllcz/kz the germ of w at =z,
vy (w) the order of w at .
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7.2.2. Let X be a smooth compactification of X over k, and Z := X \ X. There exists a
smooth formal scheme 2" over Spf(R) such that 2" ®r k = X by [SGA I, Exp. II1, 7.4]. The
category F (h)-Dﬁol(.@j@@(Z )) (cf. BZILI)) does not depend on the choice of £ up to canonical
equivalence of categories using 2.2.1]. We denote this category by F (h)-Dﬁol(X ) and call
it the category of bounded holonomic F(h)—@;}’(@—complexes.

Now let f: X — Spec(k) and f: (2, Z) — (Spf(R),0) be the structural morphisms. The
functors f; and Dy z (cf. BI4) do not depend on the choice of 2™ up to equivalences. By
abuse of language, these are denoted by fi and Dy respectively. We note that fi; can also be
used, and in the same way, we can consider the functor ji: F"-D} (U) — F*)-D? (X) for an
open immersion j: U — X.

Let R’ be a discrete valuation ring finite étale over R, and let € be an object of F()-
Db (Spf(R')). The associated og-semi-linear automorphism ¢ — ¢ (cf. B2 is denoted by
¢%. From now on we denote the K-linear automorphism ¢ by F' (cf. [L11] for the definition
of a).

7.2.3. In [Ca2], Caro defines the L-function of a complex ¢ in F("-D? (X). Let us recall the
definition. We Se

L(X,%,t) = [] detg, (1 — tdee@ pdes@), jtep(—1))~L
z€|X|
=TT T det, (1 — tdee@ pdee@); prifep(—1))-0
z€|X|re’

Recall that Fdee(@) .= pdeg(@)a ig the smallest linear power of the Frobenius. Using a result of
Etesse-LeStum, Caro gave the following cohomological interpretation of his L-function (cf. [Ca2l
3.4.1)):
L(X,€,t) = [[ detx (1 — tF; H" g (—1)) =0
reZ

For careful readers, we remind that in loc. cit., the definition of Frobenius structure of push-
forward is re-defined so that it is compatible with adjoints (cf. [loc. cit., 1.2.11]). However, this
coincides with the usual definition (see [Ab3| Remark 3.12]).

Now, assume that f is proper. Then f; can be replaced by f,. By Poincaré duality (3.1.8.4)),
we get the following functional equation:

L(X,€,t) =e(€) -t XV . (X, Dx(€),t7),

where

£(%) = det(—F; fL€(—1))"' = H det(—F; H’“f+<g(_1))(—1)”1
reZ

and F is the smallest linear power of the Frobenius. This invariant is called the (global) epsilon
factor of €. Finally, for € in F-D} (X)), we put r(%) := 3,5 (—1)'r(S"€) using the notation
of LTIl We call it the generic rank of €.

7.2.4 Remark. — Let U be a non-empty open subscheme of a proper curve X, and M be an
overconvergent F-isocrystal on U over K. Etesse-LeStum [EL|] defined the L-function for M by

Len (U, M,t) == [ det, (1 — 28 pes®); i ppy =
z€|U|

(12) The definition of the L-function is slightly different from that of Caro. This modification was made in order
that L(X, fTK,t) coincides with the L-function of X.
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We are able to interpret this global invariant in terms of the global invariant we have just
defined in the following way. Let j: U < X be the open immersion. Put ¢ := j; i (sp,M)[—1].
Then the L-function coincides with that given by Etesse-LeStum; namely, we get L(X,%,t) =
Ly (U, M,t). The easiest way to see this is to use the cohomological interpretation of the two
L-functions, and the fact that Hf, ¢ (—1) = Hriig’c(X, M) (cf. BI83). See also [Ab3, Remark
3.12] for some account.

7.2.5 Theorem (Product formula). — Let X be a proper (smooth) curve over k, € a complex
n F(h)—D}bwl(X) and w € Q}C(X x @ non-zero meromorphic form on X. We have the following
relation between the global and local factors:

(PF) e(%) = ¢“I O T e(@ls.,wa),
z€| X|

where q denotes the number of elements of k, r(€) is the generic rank of €, C denotes the
number of geometrically connected components of X, and g is the genus of any of them. We
recall that €|g, denotes the complex of differential modules defined by restriction (cf. 210 from
X to its complete trait S, at x.

The proof of the product formula will be given in §7.51

7.2.6 Corollary ([Mr, Conjecture 4.3.5]). — Let U be an non-empty open subscheme of a
proper curve X, M an overconvergent F-isocrystal on U over K, and w € Q}C(X)/k a Non-2ero
meromorphic form on X. Let us denote by M|, the associated differential Ry, -module. We
have

(PF¥)
2
7 —1)Htt —g)r vz (W)r v (w ri
[T detr(—F; Hiy (U, M) = g€ D T gue@k M degy ()= T f®(M],,ws),
1=0 z€|U| zeX\U

where F := %, q, = q38@) detys(z) := detg, (gp%feg(m);i;M) and v, (w) denotes the order of
w at x.

Proof. Let us prove that (PE) implies (PE¥): we need only to specialize all the factors. Let
j: U = X be the open immersion. We replace € := jy j* (sp,M)[—1] in (PE). Then for z € U,
we get

£(C s,y we) = €05 (M|, ,wp) - dete, (—p" W s M) ™! = e"8(M],, ,w,)

= o) ot (e

Na?

where the first equality follows from the localization triangle (3.1.9.1]) and BT and the second
(resp. third) from [Mr] (3.4.5.4)] (resp. [M] (2.19-2)]). Finally, for every x € X\U, by definition,
we have £(€|g, ,ws) = 55 (M |, » W) Considering Remark [[.2.4] we get the corollary. [

7.2.7 Remark. — (i) Note that in loc. cit., the curve X was assumed to be geometrically
connected for simplicity, so that C = 1. Since the product formula (PE]) is immediate for
punctual arithmetic Z-modules, the two statements (PE*) and (PE) are equivalent by dévissage.

(ii) By definition, the global factor £(¢’) appearing in (PE) and (PE®) does not change if
we replace the Frobenius ¢4 of € by its smallest linear power . The same is true for the
Weil-Deligne representation WD(%'|,,,) and a fortiori for the local factors. Replacing ¢¢ by ¢%
is equivalent to assuming h = f, thus F =k and K = A in[[.T.11
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7.3. Interlude on scalar extensions

In this subsection, we recall a formal way to extend scalars (cf. p.155]) in a general
Tannakian category, with the intention of use in §7.4l Most of the proofs are formal and they
are only sketched. To shorten the exposition, we may implicitly assume that the objects of our
categories have elements, so that they are A-vector spaces endowed with some extra structures.
For a general treatment, confer to loc. cit. In this subsection the field k is only assumed to be
perfect, whereas in the rest of 7] it is finite.

Let A be a Tannakian category over A. Assume that the objects of A have finite length. Let
us denote by 1 the unit object of A.

7.3.1 Definition. — Let A’ be a field extension of A and M an object of A. A A'-structure
on M is a homomorphism of A-algebras Ay/: A’ — End 4 (M )

Let Ay (resp. Ay) be a A'-structure on M (resp. N). A morphism f: M — N in A is
said to be compatible with the A’-structures if for every o in A’ we have Ay (a)f = fAu(a).
The couples (M, \pr), where Ay is a A'-structure on an object M in A, form a category, whose
morphisms are the morphisms in A compatible with the A’-structures. We denote this category
by Aps. Sometimes, we denote simply by M an object (M, Ays) in Ap:.

7.3.2. We define an internal tensor product in A, as follow. Let (Mj, A1) and (Ma, A2) be two
objects in Ay/. Since My ® M, has finite length, there exists a smallest sub-object ¢: I < M;®@M,
such that, for all @ in A, the image of A\j(a) ® idps, — idar, ® A2(a) factors through . We put
M; ® My = Coker(t). There are two natural A’-structures on M; ® Mo, given respectively
by the endomorphisms A;(a) ® idaz, and idy, ® A2(a). By construction they induce the same
N'-structure A\pp,e/n, on My @' Ms. The couple (M &' Ma, A erar,) defines an object of Ay
denoted by (M1, A1) ® (Ma, Ag). It satisfies the usual universal property of the tensor product
in the category Ap/, which makes Ay, a Tannakian category.

7.3.3 Example. — Let U be a non-empty open subscheme of a proper curve X, 7 a geometric
point of X. The category Repﬁ%(m(U ,7)) A+ of representations with local finite geometric mono-
dromy is equivalent, and even isomorphic, to Repig, (m1(U,7)) as Tannakian category.

Let K be a field as in [LIJ]l and A’/K be a finite Galois extension. By construction,
the category Isocl (U, X/K)as of overconvergent isocrystals with A’-structure is equivalent, as
Tannakian category, to Isoc’ (U, X/A' @5 K).

Now assume k to be a finite field with ¢ = p/ elements and that the order of the Frobenius
is f, so that ox = idg. If A//K is totally ramified, then F-Isoc!(U, X/K), is equivalent
to F-Tsoc! (U, X/A') as Tannakian category, where op := idy. If A’ is not totally ramified,
an overconvergent F-isocrystal with A’-structure M’ on U over K can be identified with an
overconvergent isocrystal on U/A’, endowed with a “Frobenius” ¢y of order f, which is only
A’-linear.

7.3.4. Let V be a finite dimensional A-vector space and M an object of A. The tensor product
V ®@x M is defined canonically in [DM] p.156 and p.131] as an essentially constant ind-object.
In particular, if A’/A is a finite field extension, the product A’ ®, M can be endowed with the
A-structure induced by the multiplication of A’, so it belongs to Ax/: we have a functor of
extension of scalars N @p —: A — Apr. If a1,...,a, is a base of A’ over A, then A’ @, M is
non-canonically isomorphic to @} ;a;A ®a M, with an obvious meaning of the latter.
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7.3.5. Let S: A — B be an additive functor between two categories A and B as in 7.3l It
extends to a functor Sys: Axs — Bas defined by functoriality as

Sa(M,\) i= (S(M),S(\): a s S(\a))).

By the additivity of S, it is clear that Sy, commutes with the extensions of scalars A’ @, —.
Moreover, if S is compatible with ® and right exact, then S,/ is compatible with the inner
product ®' defined in this is a consequence of the construction of ®’, considered that
A'/A is a finite extension and S commutes with finite direct limits and ®. Finally, if S is an
equivalence of Tannakian categories so is Sas.

7.4. Proof for finite geometric monodromy

The goal of this subsection is to prove the product formula in the case of overconvergent F-
isocrystals with geometrically finite monodromy, in particular for F-isocrystals which are canon-
ical extensions: see Proposition [[.4.7] and Corollary [[.4.8l Although the proof for overconvergent
F-isocrystals with finite monodromy is analogous to that of [La2l 3.2.1.7] and it is given in [Mr]
4.3.15], there are some technical difficulties to show that for geometrically finite case, and we
treat this case by using the formal scalar extension reviewed in the previous subsection.

In [[41] and [[.42] we define local and global “constants” for generalized isocrystals in
F-Isoc!(U/K)as. They will be seen as elements of the Q,-algebra of functions Spec (A’ @5 Q,) —
@p. To avoid any confusion with constant functions, we employ the term factors instead of “con-
stants”. For simplicity, we will often assume that the order of Frobenius is f, so that A = K
and o = idg, cf. LTI} we might state the definitions and prove the lemmas in the general
case, but this is not needed for proving Proposition [[.4.71

7.4.1. Assume h = f, and so A = K (cf.[LI])). Let A’/K be a finite Galois extension, U be a
non-empty open subscheme of a proper curve X, and (M, \) € F-Isoc(U, X/K)r. The Weil-
Deligne representation WD(M]|,, )4 is a (A’ @k Q@,)-module with a linear action of p,, and N, .
For any p € Spec (A’ @ Q,), we denote by (WD(M]y, )ar), the localization of WD(M|,, ) at p;

it is stable under p,, and N,,. Let us define the local factors as functions Spec (A’ @ Q,) — Q,,.
For any z € | X|, we set:

1. tk(M,M\): p— dim@p((WD(MMI)A/)p), which does not depend on z.

2. det(y,n(@): p > detg (py, (Fr); (Ker N, )™)y) = detgy (95" (@, @, MY*)p)
(cf. [Mxl, (3.4.5.3)] for the equality).

3. Letw # 0 bein QIIC(X)/k, and p, be the Haar measure on I, with values in @p normalized by

M(@ x,z) = 1 as usual, and ¢(wg): Kz — @; is also the additive character associated to w,

(cf. [LI3). As already appeared in 6.4], the epsilon factors sgig((M, M ¥(wa), pz)
are defined by

P £ 5 (WD(M]y, )ar)y, o (wa), ).
Let us write simply egg((M, My, »we), instead of sgig((M, M ¥(Wa), pa)-
7.4.2. Asin[l41] assume h = f,andso A = K. Let (M, \) be in F-Isoc' (U, X/K) /. The rigid

cohomology groups (with and without supports) of M inherit a A’-structure, so that they are

F-isocrystals with A’-structure on Spec(k) over K; we denote them respectively by Hriig(U , M) p
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and Hrlg JU, M)p (ct. [L35). They are A’-vector Spaces endowed with linear Frobenius isomor-
phisms . To shorten the notation, let H denote Hy, AU, M)y or Hﬁlg(U, M)pr.

We define det(—F; H) as the constant function Spec (A @k Q,) = Q,, p — deta/(—F; H).
We denote by det(—F"; Hy, (U, M)xr) the product 12, det(—F; Hrzlg AU, M)pr). From the
long exact sequence of rigid cohomology, it follows that det( F*;H (U, M)j,) is multiplicative

rig,c

for short exact sequences and so it is defined on the Grothendieck group of F-Isoc!(U/K ).

Remark. — In the general case, where h|f, the group H is a module over the semi-local ring
N ®p K and we endow it with the (A’®, K)-linear endomorphism F = ¢®, where a = hf 1. The
module H decompose as Gpespec(a’a, i) Hp. For every p € Spec(A’ ®a K), the localization H,
is a vector space over the field K’ := A’ @ K (where A” := A'N K C Q,, is a finite unramified
extension of A), and F' induces a K'-linear endomorphism of H,. We define det(—F'; H) as the
composition of the canonical map Spec (A’ @4 @p) — Spec (A’ ®p K), induced by the inclusion
K C @p, and the function Spec (A’ @, K) — @p sending p to detg/(—F'; Hy). We are not using
this remark in the following.

7.4.3. Let us follow the notation of [.4.1] and Let us state a variant of the product
formula (PEF) for overconvergent F-isocrystals in F-TIsoc' (U, X/K)x. Let U be a non-empty
open subscheme of X, M’ = (M,\) be in F-Isoc' (U, X/K)x and w a non-zero element of
Q,lf( X)/k° The product formula for M’ is the following relation

(7.4.3.1)
det(—F" Hig o U, M')) ™ = gm0 T g denyy ()= [T g8y, 0)
z€|U| xeX\U

between global and local factors associated to M’.

7.4.4. Assume h = f and so A = K. Let U be a non-empty open subscheme of X, and M an
overconvergent F-isocrystal on U over K. For any finite Galois extension A’/K, we can define
an overconvergent F-isocrystal A’ @ g M with A’-structure (cf. [37]).

Lemma. — The F-isocrystal M satisfies the product formula (PE®) if and only if ' @k M
satisfies the product formula with N -structure (T43.7]).

Proof. For an abelian category A, we denote by Gr (A) its Grothendieck group. In this
proof we put A = F-Isoc' (U, X/K). The formula (PE¥) (resp. (ZZ30) is a relation on the
Grothendieck group of A (resp. Ay/) with values in @; (resp. in the group of units of the @p—

algebra Q, Spec(d ®KQ”)). Each factors v appearing in the equality (PE¥)) (resp. (ZZ3.0)) are

homomorphisms v: Gr (A) — @; (resp. vpr: Gr(Ap) — (@p Spec(A/@K@”))*). By the defini-
tions of these factors, cf. (CAIHL.4.2), it follows the commutativity of the diagram

0k

Q

A/®K— l

Gr(A) -

Gr (-AA’) VA (@p Spec(A'@KQP))*

)

where the right vertical homomorphism maps each element ¢ of @; to the constant function
Spec(A @k @p) — @p of value c. Since this homomorphism is injective we conclude. |
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7.4.5. We recall that the theorem of Tsuzuki [Ts3], (7.2.2), Theorem 7.2.3| gives an equivalence
G': F-Isoc! (U, X/K)* — Repig(m(U ,Tx)), between the categories of unit-root overconvergent
F-isocrystals on U over K and continuous A-representations of 1 (U, 7y ) with local geometrically
finite monodromy. We say that a unit-root overconvergent F-isocrystal M € F' —ISOCT(U , X/ K)"
has global finite monodromy if the associated representation GT(M) factors through a finite
quotient of 71 (U, 7y ); we say that M has global geometrically finite monodromy if the restriction
of GT(M) to (U ®; F,7y) factors through a finite quotient.
The following lemma extends [Mr, Theorem 4.3.15] to isocrystals with A’-structure.

7.4.6 Lemma. — Assume h = f, so that A = K and o = idg. Let N'/K be a finite Galois
extension and U be a non-empty open subscheme of X. Let M’ = (M, \) be an overconvergent F -
isocrystal with A’ -structure on U over K. Assume M is unit-root with global finite monodromy,

then the formula (TA31) is satisfied.

Proof. By a base change to the algebraic closure k' of k in k(X), we may assume that X is
geometrically connected, i.e. C = 1. If A’/K is totally ramified, we may put ops := idys; then
the category F-Tsoc! (U, X/K) identifies to F-Isoc' (U, X/A’), cf. Example [[3.3] and so we
finish by Theorem 4.3.15].

Let us treat the general case. For any representation p: m(U,7x) — Autg (W) and any
closed point z € | X|, we denote by W, the representation (1, 7,) = 71 (U, 7x) 2y Autg (W).

We put V,, := G'(M),,, and V; := GR,(M’)% (cf. [C34]) which will be treated as a A’-vector
space with a linear action of W (n,,7,). Let us start by proving the following statement.

Claim. — The (Q, ®x A’)-module WDy/(M; ) is free and for any p € Spec(Q, @x A'), w
have WD/ (M), ), = Q, @a/ V!

Proof of the claim. Let us compute W(—1)x(M;, ) and WDa/(M, ). Their monodromy opera-
tors N are zero, because M is unit-root. Let us denote by @(I? Y ®x Vy,) the sub- K" -vector
space of Ku @K V., spanned by the finite orbits under the action of m(7,,7,). By
3.3.6], we have V(—1)(M,,) = Déco(K™ @ V). Since M has finite monodromy, we get
U(-1)(M,,) = K" @k V,, endowed with the diagonal action of 71(n;,7,) (it acts on K" via
the residual action). Hence WD(M,,) = Q, ®k V;,,, where the action of W (n;,7;) is noth-

ing else than tlia extension lﬁ/ linearity of the action of W (n,,7,). We finish by the equality
WDy (M) =Q, @V, =Q, @k N @x V. O

The product formula for M’ is then reduced to proving the following relation:

-1
detA/( F* H;gc(UyM,)A') _
(1—g)rk(M) va (w)rk(M)

=q |A7:K] H gx IA%K] detA'(an(Fx)( I”Iac vl H Erlg w:c
z€|U]| zeX\U

The proof of this equation works in the same way as the proofs of Theorem 4.3.11 and

4.3.15], by replacing A (resp. rk(M)) with A’ (resp. KV@) |
7.4.7 Proposition. — Let X be a proper curve over k, U be a non-empty open subscheme of

X, and M be an overconvergent F-isocrystal on U over K. Assume that M is unit-root with
global geometrically finite monodromy. Then M satisfies the product formula (PEY).

Proof. In this proof we put 7 := 7 for brevity. Let p: m(U,77) — Autp (V) be the repre-
sentation associated to M by GT, cf. By assumptions, M has global geometrically finite
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monodromy: i.e. the restriction of p to m1 (U ®;, F,7) factors through a finite quotient I. In
particular, the representation p factors through a quotient @ of w1 (U,7) which is an extension
of Z by the finite group I. By Remark [[L27] we may assume that the order of the Frobenius
oy of M is f, so that K = A and o = idg.

Let us show how we can reduce to the case of global finite monodromy which is treated
in Lemma The equation (PI¥) that we have to prove is a relation in the Grothendieck
group of F-Isoc!(U, X/K). By Lemma [ZZ4], we can extend scalars to any finite Galois ex-
tension A’/K. The equivalence GT above extends to an equivalence of Tannakian categories
Gj\, ;gF-ISOCT_(U, X/K)%, — Repi%(m(U,ﬁ))A/ (cf. m We i(lientify Repi%(m(.U,ﬁ))A/ with
Rep,, (m1(U,7)) (cf. [L33). The product formula is a relation in the Grothendieck group of
Rep%,(m(U, 77)); we may assume that the representation is absolutely irreducible. By a clas-
sical argument using Schur’s lemma (cf. for example Proof of 3.2.1.7] or Variant
4.10.3]), the representation (V' p’) is isomorphic to (V,5) ®as (A, x), where p: w1 (U,7) —

Autp (V) factors through a finite quotient and x: 71 (U,7) — (A)* is an unramified charac-
ter. Let Dj\,: Repi%(m(U, 7))a — F-Isoc! (U, X/K)%, be a quasi-inverse of G}L\,. Let us put
M' = D\, ((V',p)), My := D\,((V,5)) and My := D}, (N, x)). We have M' = M; @' M,
in F-Isoc' (U, X/K)4, (cf. [L32). By construction, M; has global finite monodromy and M is
constant as isocrystal, i.e. My = *N, for N € F-Isoc(Spec(k)/K)}, and ¢: U — Spec(k). Since
*N is a constant isocrystal, we have H: (U, My ® 1*N)y =2 H. (U, My)n @ N. By a direct

rig,c rig,c

calculation analogous to that of the proof of 4.3.6], we reduce to the case of global finite

monodromy, which is proven in [7.4.0l [ |
7.4.8 Corollary. — Let M be in F-Hol(ny,). Then the canonical extension M satisfies

the product formula (PE¥).
Proof. By Kedlaya’s filtration theorem [Ke2, 7.1.6], there exists a filtration

M=MygDODM;1D...oOM;=0

such that the quotient M,;/ M, is isoclinic for every i. By applying the canonical extension
functor 2.7 we get an analogous filtration on M. Considering that the equation (PEY) we
have to prove is a relation in the Grothendieck group of F -ISOCT(Gm, IP’,lC /K), we may assume M
to be isoclinic of slope A € Q. By the definition of slopes, A belongs to the discrete subgroup
(tk(M)eh)~1Z. Taking a finite totally ramified extension of A does not affect the local factors;
therefore, by extending A to such an extension of degree rk(M), we may assume that A belongs
to (eh)™1Z. So the isocrystal K is of rank 1 by construction. By tensoring M with K (=),
we are reduced to the case M = SW, where S is unit-root. By applying Lemme 4.3.6] to
Mean = (§ean)(N) | we may assume A = 0. Since S is unit-root, S®" has global geometrically
finite monodromy by the very construction of the canonical extension (cf. 2.6 and 2.7]),
and we finish by Proposition [[.4.7] [

7.5. Proof of the main result

We use the notation of 2.4.11

7.5.1 Lemma. — Let E be an overconvergent F-isocrystal on A,lf. Suppose that it is reqular
at infinity. Then E is a constant overconvergent F-isocrystal.

Proof. Let ¢ denote the structural morphism of Ai. By construction of the rigid cohomol-
ogy [Crxdl (8.1.1)], we have Hig(Ai,E) = 0 and, by the GOS formula for rigid cohomol-

ogy, we get dimpg Hgg(Ai,E) — dimg Hrlig(A}f,E) = x(AL, E) = rk(FE). In particular hy =
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dimp Hroig(Ai, E) > rk(FE). By 2.1.2], there is an injection of F-isocrystals L*Hﬂg(A,lf, E) —
E, so that hg = rk(F) and F is isomorphic to the constant isocrystal L*H]?ig(A]lg, E). [

7.5.2. Let ./ := Spf(k[u]), ' := Spf(k[u']). We put K := k(u)), K" := k(u')). Let mo :
St = " sending u' to 1/z'. For a differential module M with Frobenius structure on 7/, using
the canonical extension, there exists a canonical overconvergent F-isocrystal on G,,, denoted by
A such that it is tamely ramified at 0 and .#|,_, = 7%,(M). We denote ¥(.#|s,) by ¥1(M).

On the other hand, suppose moreover that M is of rank 1. Using the linearization functor

(CIZT), we get a character
X = (Lk o \I’)(M) Gir — K",

For f' € K™*, we put
M(f') == (x orec)(f') € K™,

where rec: K™* — G?Cb, is the reciprocity map normalized a la Deligne (i.e. it sends uniformizers
of K’ to elements of G% whose image in sz is the geometric Frobenius F').
When M is regular of rank 1, we get

(7.5.2.1) tr(F*, Uy (M)) = M(—u).
This can be seen in exactly the same way as 3.5.2.1], and we leave the details to the reader.

Remark. — We need to be careful for the multiplicativity. Namely, given rank 1 differential
modules M, M, M" such that M = M’ @ M", we have

M1)(f) = M(=1)(f) - M (=1)(f).
See for an explanation.

7.5.3 Proposition ([La2, Théoreme 3.4.2]). — Let U C Al be an open subscheme, and we
put S := A\ U. Let .4 be an overconvergent F-isocrystal of rank r on U which is unramified
at infinity. Then we get

det(RTo(Ugcur, #)[1]) ® det(K"™ @ A |5, )(—1) = Q) W1 (det (@O0 (jiry,tt |,)) (=75 — 1))
ses
as Deligne modules, where v, = tk( A |,,) + irx(.4|,,), and we used the notation of BI1.9l
Proof. Using the notation of Proposition [(.2.8] we get
det (U (c"|5,)(—2)) = det(RT (Uur, #4)[1]) @ det(K™ @ A 5. (—1))

as Deligne modules by the same proposition. Since the Gx-action on the right hand side is
unramified (i.e. the action of the inertia subgroup is trivial), the left hand side is also unramified.
Since V is an exact functor and commutes with tensor product, we get an equivalence of functors
det oV = V o det. On the other hand, for a differential module M, we get D, (det(M)(—1)) =
det(ID,, (M(—1))). Thus, we get

(7.5.3.1) det (U (A|5,)(~2)) 2 U (—1)(det(4"|5,(—1))).

We note that the singularity of A in o s only at 0/ by Corollary 1.7, and we showed that
det(.#") is unramified at 0’. Thus there exists an overconvergent F-isocrystal .4 on &/ such

that e/VLQw_{O/} = det(/%\/)|£{/_{0/}.
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Now, we get

N oo = det (7], (1)) 2= R) 7 det (F ) (") (~1))
ses
= ®det OOO les*-//‘ns))(_’Ys) ®£(6)7
ses

where 6 := Y s - tr(s), by the stationary phase formula 5.1.8, Lemma 2.4.9, and Corollary
[LZA. We note that the slope of ®(0°) (jirg,.#|,,) is strictly less than 1 by Corollary B2 for
any s € S. Thus, the slope of det(fb(o’ool)(jws*//ﬂns)) is also strictly less than 1. Since the rank
is 1, the slope of det(<I>(07°°/)(j!Ts*///|ns)) is 0 for any s € S by the Hasse-Arf theorem
14.12]. Thus

N =N @ L(—6-2)

is a convergent F-isocrystal on .7/, and regular at infinity. By Lemma [Z.5.0] .4” is in fact a
constant overconvergent F-isocrystal. By (.5.3.]) and the fact that U(—1) commutes with ®,
the proposition follows. [ |

7.5.4 Theorem (p-adic determinant formula). — For any free differential R »-module with
Frobenius structure M, we get

e0f (M, du) = (=1)7 det(@) (M) (=7 — 1)(),
where 7 := rk(M) + irr(M).

Remark. — (i) Before proving the theorem, we remark that the right hand side of the equality
is multiplicative with respect to short exact sequences by Remark

(ii) Although the idea of the proof is exactly the same as loc. cit., we include the complete
proof of the proposition since there are a lot of minor differences in the quantities appearing
(especially the Tate twist —y — 1 in the statement of the theorem), and we think that it might
help the reader to understand the differences with the ¢-adic case.

Proof. Let V be a og-K-vector space of dimension 1. Then the theorem holds for a free differ-
ential R-module M if and only if it holds for M ®x V. Indeed, by [Mi, 2.19 (2)], we have

rlg(/\/l ®@r V,du) = sgg(./\/l, du) - det(F;V)7.
On the other hand, we see that
2O (M @k V) =2 @O (M) @k V

by using Proposition Thus, the claim follows.

First we will treat the case where M is regular. Since both sides are multiplicative, we may
assume that M is irreducible. By Kedlaya’s slope filtration theorem, we get that M is isoclinic.
Since both sides of the equality are stable under base change by a totally ramified extension of A,
we may assume that the slope A of M is in (eh)™'Z. Since the equality is stable under twisting
and (M(_)‘))()‘) ~ M, it suffices to show the proposition for M~ and we may suppose that
M is unit-root. Thus, it corresponds to a geometrically finite representation of Gx denoted by
p. We know that there exists a finite extension k’/k such that p is the induced representation of
G of rank 1 where £ := k' ®;, K. This shows that there exists a finite unramified extension L
of K, and a differential Rz-module with Frobenius structure My, such that M = f, M where
f: R — Ry is the canonical finite étale homomorphism. By 2.43] we get

O (M) = f,(®O) (ML)
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For the calculation of 6Big, use 2.14 (2)]. This reduces to showing the theorem for My, and
thus, we may assume that M is of rank 1.

In this case we can write M = J,|,, ® W such that W is a trivial differential module if
we forget the Frobenius structure, and J, is the Kummer isocrystal (cf. B.2.9]). Then we may
suppose that W is trivial by the observation at the beginning of this proof. The verification is
reduced to showing the theorem in the M = Jifa\m =: Fu, case.

In this case, first, assume that o € Z. Then jj* Fu, = Fu, by Proposition By the
stationary phase formula and the same proposition, we get

(0 (Fuy) = 7 (Ao @ Gla,7)(1)) . = Fua @G (a, 7)(1).
Furthermore, we have
U(Fua) = V(Fua)¥ (—1)) 2 (B® Fua)?7°(1)

by definition (cf. B.I9). Combining these, we get \I/(@(O"X’/)(fua))(—m >~ (B® Fua)?=" ®
G(a, 7). The space (B ® Fuy)?=0 is the sub-K"-vector space spanned by x~% where e is the
canonical base of Fu,. Let a =i-(q¢—1)"1, and x, be the i-th power of Teichmiiller character
k* — K"Y'. Then we get

tr(F*,G(a,m)) = — Z Xa () - Yr(x)

zek*
by [EL, 6.5] using the fact that Hfig(([}m,% ® %) = 0 for i # 1 (which can be proved by

GOS-formula for example). Now, let us treat the case where o = 0, and thus M = R. In this
case, we get an exact sequence

0—=0(1) )R —j+R—35—0.

We get @0 (j,R) = j. R by using Proposition BZ7 and Theorem BZ8 Thus, we obtain
0 (5R) 2 j, R(1). Combining all of these, we get

1 ifa=0
“x(=1) - D pens Xa(®@) - tp(z)  if o #0.

On the other hand, let X := (rec o WD)(M). By using [Se, XIV §3, Prop 8], we get

det (@) (jy Fua))(=2)(u') = {

xa () x e k*CK*
X(r) = xal-1) z=u
1 reEl4+m

(note that the image of the geometric Frobenius is different, so we need to calculate (z~% a~!)
with n = ¢ — 1 in the notation of loc. cit.). This shows that

-1 fa=0
X(=1) Y e Xal(@) - p(z) i a#0.

Thus the theorem follows in this case.

We denote by 7 the rank of M. By taking the canonical extension, there exists an over-
convergent F-isocrystal .#' on P!\ {0,1} regular at 1, and .#'|,, = 75(M). We put A4 :=
9;@(00) ®@Tg,@ A'. By Corollary [[.4.8], we get

NS (Fuig, du) = {

det(—F; HE(A'\ {0,1},.2)) 7 - ¢" - det(—Foo; M |s..) = ef5(M, —du) - €bB(M |y, —diz],, )
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On the other hand, by Proposition [.5.3] we get

det(—F; HX(A'\ {0,1}, .2))™ - ¢" - det(—Foo; M |s..) =
(—1)7 det(@©) (M) (—y — 1) (=) - (=1)" det(O) (jy. |, ) (—r — 1)(—2)

taking (Z5.2.1)) into account (which is applicable because the differential modules det(®(0°) (... ))
are regular of rank 1). By considering the regular case proven above, we get the theorem. W

7.5.5 Corollary. — Let U C A,l€ be an open subscheme, and M be an overconvergent F'-
isocrystal of rank r on U which is unramified at oo. Let S := A\ U. Then we get

det(_F; H:ig,c(Uv M))_l : qr ' det(_Foo; Moo) = H EBig(M|ns7 _dx|773)'
ses

Proof. The proof is exactly the same as [La2l 3.5.2] using Proposition [[5.3] and we leave the
details to the reader. [ ]

7.5.6. Proof of Theorem

The proof is essentially the same as 3.3.2]: it is a reduction to Corollary We point
out a difference from loc. cit.: to prove that the right hand side of the product formula does
not depend on the choice of the differential form w, we proceed by dévissage and we use

Proposition 4.3.9]. We leave the details to the reader. |
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